12,576 research outputs found

    A Compact Representation of Histopathology Images using Digital Stain Separation & Frequency-Based Encoded Local Projections

    Full text link
    In recent years, histopathology images have been increasingly used as a diagnostic tool in the medical field. The process of accurately diagnosing a biopsy sample requires significant expertise in the field, and as such can be time-consuming and is prone to uncertainty and error. With the advent of digital pathology, using image recognition systems to highlight problem areas or locate similar images can aid pathologists in making quick and accurate diagnoses. In this paper, we specifically consider the encoded local projections (ELP) algorithm, which has previously shown some success as a tool for classification and recognition of histopathology images. We build on the success of the ELP algorithm as a means for image classification and recognition by proposing a modified algorithm which captures the local frequency information of the image. The proposed algorithm estimates local frequencies by quantifying the changes in multiple projections in local windows of greyscale images. By doing so we remove the need to store the full projections, thus significantly reducing the histogram size, and decreasing computation time for image retrieval and classification tasks. Furthermore, we investigate the effectiveness of applying our method to histopathology images which have been digitally separated into their hematoxylin and eosin stain components. The proposed algorithm is tested on the publicly available invasive ductal carcinoma (IDC) data set. The histograms are used to train an SVM to classify the data. The experiments showed that the proposed method outperforms the original ELP algorithm in image retrieval tasks. On classification tasks, the results are found to be comparable to state-of-the-art deep learning methods and better than many handcrafted features from the literature.Comment: Accepted for publication in the International Conference on Image Analysis and Recognition (ICIAR 2019

    Scalable iterative methods for sampling from massive Gaussian random vectors

    Full text link
    Sampling from Gaussian Markov random fields (GMRFs), that is multivariate Gaussian ran- dom vectors that are parameterised by the inverse of their covariance matrix, is a fundamental problem in computational statistics. In this paper, we show how we can exploit arbitrarily accu- rate approximations to a GMRF to speed up Krylov subspace sampling methods. We also show that these methods can be used when computing the normalising constant of a large multivariate Gaussian distribution, which is needed for both any likelihood-based inference method. The method we derive is also applicable to other structured Gaussian random vectors and, in particu- lar, we show that when the precision matrix is a perturbation of a (block) circulant matrix, it is still possible to derive O(n log n) sampling schemes.Comment: 17 Pages, 4 Figure

    Improving information centrality of a node in complex networks by adding edges

    Full text link
    The problem of increasing the centrality of a network node arises in many practical applications. In this paper, we study the optimization problem of maximizing the information centrality IvI_v of a given node vv in a network with nn nodes and mm edges, by creating kk new edges incident to vv. Since IvI_v is the reciprocal of the sum of resistance distance Rv\mathcal{R}_v between vv and all nodes, we alternatively consider the problem of minimizing Rv\mathcal{R}_v by adding kk new edges linked to vv. We show that the objective function is monotone and supermodular. We provide a simple greedy algorithm with an approximation factor (1βˆ’1e)\left(1-\frac{1}{e}\right) and O(n3)O(n^3) running time. To speed up the computation, we also present an algorithm to compute (1βˆ’1eβˆ’Ο΅)\left(1-\frac{1}{e}-\epsilon\right)-approximate resistance distance Rv\mathcal{R}_v after iteratively adding kk edges, the running time of which is O~(mkΟ΅βˆ’2)\widetilde{O} (mk\epsilon^{-2}) for any Ο΅>0\epsilon>0, where the O~(β‹…)\widetilde{O} (\cdot) notation suppresses the poly(log⁑n){\rm poly} (\log n) factors. We experimentally demonstrate the effectiveness and efficiency of our proposed algorithms.Comment: 7 pages, 2 figures, ijcai-201
    • …
    corecore