615 research outputs found

    Grad and Classes with Bounded Expansion II. Algorithmic Aspects

    Full text link
    Classes of graphs with bounded expansion are a generalization of both proper minor closed classes and degree bounded classes. Such classes are based on a new invariant, the greatest reduced average density (grad) of G with rank r, ∇r(G). These classes are also characterized by the existence of several partition results such as the existence of low tree-width and low tree-depth colorings. These results lead to several new linear time algorithms, such as an algorithm for counting all the isomorphs of a fixed graph in an input graph or an algorithm for checking whether there exists a subset of vertices of a priori bounded size such that the subgraph induced by this subset satisfies some arbirtrary but fixed first order sentence. We also show that for fixed p, computing the distances between two vertices up to distance p may be performed in constant time per query after a linear time preprocessing. We also show, extending several earlier results, that a class of graphs has sublinear separators if it has sub-exponential expansion. This result result is best possible in general

    Grad and classes with bounded expansion I. decompositions

    Full text link
    We introduce classes of graphs with bounded expansion as a generalization of both proper minor closed classes and degree bounded classes. Such classes are based on a new invariant, the greatest reduced average density (grad) of G with rank r, grad r(G). For these classes we prove the existence of several partition results such as the existence of low tree-width and low tree-depth colorings. This generalizes and simplifies several earlier results (obtained for minor closed classes)

    Deciding first-order properties of nowhere dense graphs

    Full text link
    Nowhere dense graph classes, introduced by Nesetril and Ossona de Mendez, form a large variety of classes of "sparse graphs" including the class of planar graphs, actually all classes with excluded minors, and also bounded degree graphs and graph classes of bounded expansion. We show that deciding properties of graphs definable in first-order logic is fixed-parameter tractable on nowhere dense graph classes. At least for graph classes closed under taking subgraphs, this result is optimal: it was known before that for all classes C of graphs closed under taking subgraphs, if deciding first-order properties of graphs in C is fixed-parameter tractable, then C must be nowhere dense (under a reasonable complexity theoretic assumption). As a by-product, we give an algorithmic construction of sparse neighbourhood covers for nowhere dense graphs. This extends and improves previous constructions of neighbourhood covers for graph classes with excluded minors. At the same time, our construction is considerably simpler than those. Our proofs are based on a new game-theoretic characterisation of nowhere dense graphs that allows for a recursive version of locality-based algorithms on these classes. On the logical side, we prove a "rank-preserving" version of Gaifman's locality theorem.Comment: 30 page

    First-order queries on classes of structures with bounded expansion

    Full text link
    We consider the evaluation of first-order queries over classes of databases with bounded expansion. The notion of bounded expansion is fairly broad and generalizes bounded degree, bounded treewidth and exclusion of at least one minor. It was known that over a class of databases with bounded expansion, first-order sentences could be evaluated in time linear in the size of the database. We give a different proof of this result. Moreover, we show that answers to first-order queries can be enumerated with constant delay after a linear time preprocessing. We also show that counting the number of answers to a query can be done in time linear in the size of the database
    • …
    corecore