22,820 research outputs found

    Exploiting the Hierarchical Structure of Rule-Based Specifications for Decision Planning

    Get PDF
    Rule-based specifications have been very successful as a declarative approach in many domains, due to the handy yet solid foundations offered by rule-based machineries like term and graph rewriting. Realistic problems, however, call for suitable techniques to guarantee scalability. For instance, many domains exhibit a hierarchical structure that can be exploited conveniently. This is particularly evident for composition associations of models. We propose an explicit representation of such structured models and a methodology that exploits it for the description and analysis of model- and rule-based systems. The approach is presented in the framework of rewriting logic and its efficient implementation in the rewrite engine Maude and is illustrated with a case study.

    An Algebraic Framework for Compositional Program Analysis

    Full text link
    The purpose of a program analysis is to compute an abstract meaning for a program which approximates its dynamic behaviour. A compositional program analysis accomplishes this task with a divide-and-conquer strategy: the meaning of a program is computed by dividing it into sub-programs, computing their meaning, and then combining the results. Compositional program analyses are desirable because they can yield scalable (and easily parallelizable) program analyses. This paper presents algebraic framework for designing, implementing, and proving the correctness of compositional program analyses. A program analysis in our framework defined by an algebraic structure equipped with sequencing, choice, and iteration operations. From the analysis design perspective, a particularly interesting consequence of this is that the meaning of a loop is computed by applying the iteration operator to the loop body. This style of compositional loop analysis can yield interesting ways of computing loop invariants that cannot be defined iteratively. We identify a class of algorithms, the so-called path-expression algorithms [Tarjan1981,Scholz2007], which can be used to efficiently implement analyses in our framework. Lastly, we develop a theory for proving the correctness of an analysis by establishing an approximation relationship between an algebra defining a concrete semantics and an algebra defining an analysis.Comment: 15 page

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm
    corecore