72 research outputs found

    Phase Precoded Compute-and-Forward with Partial Feedback

    Full text link
    In this work, we propose phase precoding for the compute-and-forward (CoF) protocol. We derive the phase precoded computation rate and show that it is greater than the original computation rate of CoF protocol without precoder. To maximize the phase precoded computation rate, we need to 'jointly' find the optimum phase precoding matrix and the corresponding network equation coefficients. This is a mixed integer programming problem where the optimum precoders should be obtained at the transmitters and the network equation coefficients have to be computed at the relays. To solve this problem, we introduce phase precoded CoF with partial feedback. It is a quantized precoding system where the relay jointly computes both a quasi-optimal precoder from a finite codebook and the corresponding network equations. The index of the obtained phase precoder within the codebook will then be fedback to the transmitters. A "deep hole phase precoder" is presented as an example of such a scheme. We further simulate our scheme with a lattice code carved out of the Gosset lattice and show that significant coding gains can be obtained in terms of equation error performance.Comment: 5 Pages, 4 figures, submitted to ISIT 201

    Lattices from Codes for Harnessing Interference: An Overview and Generalizations

    Full text link
    In this paper, using compute-and-forward as an example, we provide an overview of constructions of lattices from codes that possess the right algebraic structures for harnessing interference. This includes Construction A, Construction D, and Construction πA\pi_A (previously called product construction) recently proposed by the authors. We then discuss two generalizations where the first one is a general construction of lattices named Construction πD\pi_D subsuming the above three constructions as special cases and the second one is to go beyond principal ideal domains and build lattices over algebraic integers

    Efficient Decoding Algorithms for the Compute-and-Forward Strategy

    Full text link
    We address in this paper decoding aspects of the Compute-and-Forward (CF) physical-layer network coding strategy. It is known that the original decoder for the CF is asymptotically optimal. However, its performance gap to optimal decoders in practical settings are still not known. In this work, we develop and assess the performance of novel decoding algorithms for the CF operating in the multiple access channel. For the fading channel, we analyze the ML decoder and develop a novel diophantine approximation-based decoding algorithm showed numerically to outperform the original CF decoder. For the Gaussian channel, we investigate the maximum a posteriori (MAP) decoder. We derive a novel MAP decoding metric and develop practical decoding algorithms proved numerically to outperform the original one
    • …
    corecore