456 research outputs found

    Exploratory study to explore the role of ICT in the process of knowledge management in an Indian business environment

    Get PDF
    In the 21st century and the emergence of a digital economy, knowledge and the knowledge base economy are rapidly growing. To effectively be able to understand the processes involved in the creating, managing and sharing of knowledge management in the business environment is critical to the success of an organization. This study builds on the previous research of the authors on the enablers of knowledge management by identifying the relationship between the enablers of knowledge management and the role played by information communication technologies (ICT) and ICT infrastructure in a business setting. This paper provides the findings of a survey collected from the four major Indian cities (Chennai, Coimbatore, Madurai and Villupuram) regarding their views and opinions about the enablers of knowledge management in business setting. A total of 80 organizations participated in the study with 100 participants in each city. The results show that ICT and ICT infrastructure can play a critical role in the creating, managing and sharing of knowledge in an Indian business environment

    Two-tier Intrusion Detection System for Mobile Ad Hoc Networks

    Get PDF
    Nowadays, a commonly used wireless network (i.e. Wi-Fi) operates with the aid of a fixed infrastructure (i.e. an access point) to facilitate communication between nodes when they roam from one location to another. The need for such a fixed supporting infrastructure limits the adaptability of the wireless network, especially in situations where the deployment of such an infrastructure is impractical. In addition, Wi-Fi limits nodes' communication as it only provides facility for mobile nodes to send and receive information, but not reroute the information across the network. Recent advancements in computer network introduced a new wireless network, known as a Mobile Ad Hoc Network (MANET), to overcome these limitations. MANET has a set of unique characteristics that make it different from other kind of wireless networks. Often referred as a peer to peer network, such a network does not have any fixed topology, thus nodes are free to roam anywhere, and could join or leave the network anytime they desire. Its ability to be setup without the need of any infrastructure is very useful, especially in geographically constrained environments such as in a military battlefield or a disaster relief operation. In addition, through its multi hop routing facility, each node could function as a router, thus communication between nodes could be made available without the need of a supporting fixed router or an access point. However, these handy facilities come with big challenges, especially in dealing with the security issues. This research aims to address MANET security issues by proposing a novel intrusion detection system that could be used to complement existing prevention mechanisms that have been proposed to secure such a network. A comprehensive analysis of attacks and the existing security measures proved that there is a need for an Intrusion Detection System (IDS) to protect MANETs against security threats. The analysis also suggested that the existing IDS proposed for MANET are not immune against a colluding blackmail attack due to the nature of such a network that comprises autonomous and anonymous nodes. The IDS architecture as proposed in this study utilises trust relationships between nodes to overcome this nodes' anonymity issue. Through a friendship mechanism, the problems of false accusations and false alarms caused by blackmail attackers in global detection and response mechanisms could be eliminated. The applicability of the friendship concept as well as other proposed mechanisms to solve MANET IDS related issues have been validated through a set of simulation experiments. Several MANET settings, which differ from each other based on the network's density level, the number of initial trusted friends owned by each node, and the duration of the simulation times, have been used to study the effects of such factors towards the overall performance of the proposed IDS framework. The results obtained from the experiments proved that the proposed concepts are capable to at least minimise i f not fully eliminate the problem currently faced in MANET IDS

    A New Approach for DDoS attacks to discriminate the attack level and provide security for DDoS nodes in MANET

    Get PDF
    Mobile Ad Hoc Networks (MANETs) enable versatile hosts to frame a correspondence arrange without a prefixed framework. In military applications portable specially appointed system assumes essential part since it is particularly planned network for on request necessity and in circumstances where set up of physical network isn't conceivable. Despite the fact that it gives high adaptability, it likewise conveys more difficulties for MANETs to battle against malicious assaults. In any case, the property of mobility and excess additionally motivates new plans to outline safeguard procedure. In this paper, we propose a procedure to relieve DDoS assaults in MANETs. Expect that a malicious attacker ordinarily targets particular victims. The attacker will surrender if the assault neglected to accomplish the coveted objectives after a specific length of assaulting time. In our assurance system, we exploit high excess and select a protection node. Once a DDoS attack has been identified, the suspicious movement will be diverted to the protection node. The victim will work typically, and it is sensible to expect that the attacker will stop the trivial endeavors. Through escalated recreation test utilizing NS-2, we have confirmed the viability of our approach and assessed the cost and overhead of the framework

    Intrusion detection and response model for mobile ad hoc networks.

    Get PDF
    This dissertation presents a research whose objective is to design and develop an intrusion detection and response model for Mobile Ad hoc NETworks (MANET). Mobile ad hoc networks are infrastructure-free, pervasive and ubiquitous in nature, without any centralized authority. These unique MANET characteristics present several changes to secure them. The proposed security model is called the Intrusion Detection and Response for Mobile Ad hoc Networks (IDRMAN). The goal of the proposed model is to provide a security framework that will detect various attacks and take appropriate measures to control the attack automatically. This model is based on identifying critical system parameters of a MANET that are affected by various types of attacks, and continuously monitoring the values of these parameters to detect and respond to attacks. This dissertation explains the design and development of the detection framework and the response framework of the IDRMAN. The main aspects of the detection framework are data mining using CART to identify attack sensitive network parameters from the wealth of raw network data, statistical processing using six sigma to identify the thresholds for the attack sensitive parameters and quantification of the MANET node state through a measure called the Threat Index (TI) using fuzzy logic methodology. The main aspects of the response framework are intruder identification and intruder isolation through response action plans. The effectiveness of the detection and response framework is mathematically analyzed using probability techniques. The detection framework is also evaluated by performance comparison experiments with related models, and through performance evaluation experiments from scalability perspective. Performance metrics used for assessing the detection aspect of the proposed model are detection rate and false positive rate at different node mobility speed. Performance evaluation experiments for scalability are with respect to the size of the MANET, where more and more mobile nodes are added into the MANET at varied mobility speed. The results of both the mathematical analysis and the performance evaluation experiments demonstrate that the IDRMAN model is an effective and viable security model for MANET

    A Prey-Predator Defence Mechanism For Ad Hoc On-Demand Distance Vector Routing Protocol

    Get PDF
    This study proposes a nature-based system survivability model. The model was simulated, and its performance was evaluated for the mobile ad hoc wireless networks. The survivability model was used to enable mobile wireless distributed systems to keep on delivering packets during their stated missions in a timely manner in the presence of attacks. A prey-predator communal defence algorithm was developed and fused with the Ad hoc On-demand Distance Vector (AODV) protocol. The mathematical equations for the proposed model were formulated using the Lotka-Volterra theory of ecology. The model deployed a security mechanism for intrusion detection in three vulnerable sections of the AODV protocol. The model simulation was performed using MATLAB for the mathematical model evaluation and using OMNET++ for protocol performance testing. The MATLAB simulation results, which used empirical and field data, have established that the adapted Lotka-Volterra-based equations adequately represent network defense using the communal algorithm. Using the number of active nodes as a measure of throughput after attack (with a maximum throughput of 250 units), the proposed model had a throughput of 230 units while under attack and the intrusion was nullified within 2 seconds. The OMNET++ results for protocol simulation that use throughput, delivery ratio, network delay, and load as performance metrics with the OMNET++ embedded datasets showed good performance of the model, which was better than the existing conventional survivability systems. The comparison of the proposed model with the existing model is also presented. The study concludes that the proposed communal defence model was effective in protecting the entire routing layer (layer 2) of the AODV protocol when exposed to diverse forms of intrusion attacks

    On secure communication in integrated internet and heterogeneous multi-hop wireless networks.

    Get PDF
    Integration of the Internet with a Cellular Network, WMAN, WLAN, and MANET presents an exceptional promise by having co-existence of conventional WWANs/WMANs/WLANs with wireless ad hoc networks to provide ubiquitous communication. We call such integrated networks providing internet accessibility for mobile users as heterogeneous multi-hop wireless networks where the Internet and wireless infrastructure such as WLAN access points (APs) and base stations (BSs) constitute the backbone for various emerging wireless networks (e.g., multi-hop WLAN and ad hoc networks. Earlier approaches for the Internet connectivity either provide only unidirectional connectivity for ad hoc hosts or cause high overhead as well as delay for providing full bi-directional connections. In this dissertation, a new protocol is proposed for integrated Internet and ad hoc networks for supporting bi-directional global connectivity for ad hoc hosts. In order to provide efficient mobility management for mobile users in an integrated network, a mobility management protocol called multi-hop cellular IP (MCIP) has been proposed to provide a micro-mobility management framework for heterogeneous multi-hop network. The micro-mobility is achieved by differentiating the local domain from the global domain. At the same time, the MCIP protocol extends Mobile IP protocol for providing macro-mobility support between local domains either for single hop MSs or multi-hop MSs. In the MCIP protocol, new location and mobility management approaches are developed for tracking mobile stations, paging, and handoff management. This dissertation also provides a security protocol for integrated Internet and MANET to establish distributed trust relationships amongst mobile infrastructures. This protocol protects communication between two mobile stations against the attacks either from the Internet side or from wireless side. Moreover, a secure macro/micro-mobility protocol (SM3P) have been introduced and evaluated for preventing mobility-related attacks either for single-hop MSs or multi-hop MSs. In the proposed SM3P, mobile IP security has been extended for supporting macro-mobility across local domains through the process of multi-hop registration and authentication. In a local domain, a certificate-based authentication achieves the effective routing and micro-mobility protection from a range of potential security threats

    The enablers and implementation model for mobile KMS in Australian healthcare

    Get PDF
    In this research project, the enablers in implementing mobile KMS in Australian regional healthcare will be investigated, and a validated framework and guidelines to assist healthcare in implementing mobile KMS will also be proposed with both qualitative and quantitative approaches. The outcomes for this study are expected to improve the understanding the enabling factors in implementing mobile KMS in Australian healthcare, as well as provide better guidelines for this process
    corecore