1,035 research outputs found

    Variability and trend of the north west Australia rainfall: observations and coupled climate modeling

    Get PDF
    Since 1950, there has been an increase in rainfall over North West Australia (NWA), occurring mainly during the Southern Hemisphere (SH) summer season. A recent study using 20th century multi-member ensemble simulations in a global climate model forced with and without increasing anthropogenic aerosols suggests that the rainfall increase is attributable to increasing Northern Hemisphere aerosols. The present study investigates the dynamics of the observed trend toward increased rainfall and compares the observed trend with that generated in the model forced with increasing aerosols. We find that the observed positive trend in rainfall is projected onto two modes of variability. The first mode is associated with an anomalously low mean sea level pressure (MSLP) off NWA instigated by the enhanced sea surface temperature (SST) gradients towards the coast. The associated cyclonic flows bring high moisture air to northern Australia, leading to an increase in rainfall. The second mode is associated with an anomalously high MSLP over much of the Australian continent; the anticyclonic circulation pattern with northwesterly flows west of 130°E and generally opposite flows in northeastern Australia, determine that when rainfall is anomalously high, west of 130oE, rainfall is anomalously low east of this longitude. The sum of the upward trends in these two modes compares well to the observed increasing trend pattern. The modeled rainfall trend, however, is generated by a different process. The model suffers from an equatorial cold-tongue bias: the tongue of anomalies associated with El Niño-Southern Oscillation extends too far west into the eastern Indian Ocean. Consequently, there is an unrealistic relationship in the SH summer between Australian rainfall and eastern Indian Ocean SST: the rise in SST is associated with an increasing rainfall over NWA. In the presence of increasing aerosols, a significant SST increase occurs in the eastern tropical Indian Ocean. As a result, the modeled rainfall increase in the presence of aerosol forcing is accounted for by these unrealistic relationships. It is not clear whether, in a model without such defects, the observed trend can be generated by increasing aerosols. Thus, the impact of aerosols on Australian rainfall remains an open question

    Potential of Equatorial Atlantic Variability to Enhance El Nino Prediction

    Get PDF
    Extraordinarily strong El Niño events, such as those of 1982/83 and 1997/98, have been poorly predicted by operational seasonal forecasts made before boreal spring, despite significant advances in understanding, improved models, and enhanced observational networks. The Equatorial Atlantic Zonal Mode – a phenomenon similar to El Niño but much weaker and peaking in boreal summer – impacts winds over the Pacific, and hence affects El Niño, and also potentially its predictability. Here we use a climate model to perform a suite of seasonal predictions with and without SST in the Atlantic restored to observations. We show for the first time that knowledge of Equatorial Atlantic sea surface temperature (SST) significantly improves the prediction across boreal spring of major El Niño events and also weaker variability. This is because Atlantic SST acts to modulate El Niño variability, rather than triggering events. Our results suggest that better prediction of major El Niño events might be achieved through model improvement in the Equatorial Atlantic

    CLIVAR Exchanges - African Monsoon Multidisciplinary Analysis (AMMA)

    No full text

    The Influence of the 2006 Indonesian Biomass Burning Aerosols on Tropical Dynamics Studied with the GEOS-5 AGCM

    Get PDF
    The direct and semi-direct effects of aerosols produced by Indonesian biomass burning (BB) during August November 2006 on tropical dynamics have been examined using NASA's Goddard Earth Observing System, Version 5 (GEOS-5) atmospheric general circulation model (AGCM). The AGCM includes CO, which is transported by resolved and sub-grid processes and subject to a linearized chemical loss rate. Simulations were driven by two sets of aerosol forcing fields calculated offline, one that included Indonesian BB aerosol emissions and one that did not. In order to separate the influence of the aerosols from internal model variability, the means of two ten-member ensembles were compared. Diabatic heating from BB aerosols increased temperatures over Indonesia between 150 and 400 hPa. The higher temperatures resulted in strong increases in upward grid-scale vertical motion, which increased water vapor and CO over Indonesia. In October, the largest increases in water vapor were found in the mid-troposphere (~25%) while the largest increases in CO occurred just below the tropopause (80 ppbv or ~50%). Diabatic heating from the Indonesian BB aerosols caused CO to increase by 9% throughout the tropical tropopause layer in November and 5% in the lower stratosphere in December. The results demonstrate that aerosol heating plays an important role in the transport of BB pollution and troposphere-to-stratosphere transport. Changes in vertical motion and cloudiness induced by aerosol heating can also alter the transport and phase of water vapor in the upper troposphere/lower stratosphere

    ENSO and IOD teleconnections for African ecosystems: evidence of destructive interference between climate oscillations

    Get PDF
    Rainfall and vegetation across Africa are known to resonate with the coupled ocean-atmosphere phenomena of El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). However, the regional-scale implications of sea surface temperature variability for Africa's photosyntheis have received little focused attention, particularly in the case of IOD. Furthermore, studies exploring the interactive effects of ENSO and IOD when coincident are lacking. This analysis uses remotely sensed vegetation change plus a land surface model driven with observed meteorology to investigate how rainfall, vegetation, and photosynthesis across Africa respond to these climate oscillations. In addition to the relatively well-known ENSO forcing, the IOD induces large departures of photosynthesis across much of Africa associated with anomalies in rainfall and vegetation greenness. More importantly, sizeable independent effects can be suppressed or even reversed by destructive interferences during periods of simultaneous ENSO and IOD activity. For example, effects of positive IOD on southeastern Africa tended to dominate those of El Niño during their coincidence spanning 1997–1998, with sign reversal of El Niño's typically strong suppression of photosynthesis in this region. These findings call into question past analyses examining teleconnections to ENSO or IOD in isolation, and indicate the need to consider their simultaneous states when examining influences on hydroclimatic and ecological conditions across Africa

    Cosmic Rays and Climate

    Get PDF
    Among the most puzzling questions in climate change is that of solar-climate variability, which has attracted the attention of scientists for more than two centuries. Until recently, even the existence of solar-climate variability has been controversial - perhaps because the observations had largely involved temporary correlations between climate and the sunspot cycle. Over the last few years, however, diverse reconstructions of past climate change have revealed clear associations with cosmic ray variations recorded in cosmogenic isotope archives, providing persuasive evidence for solar or cosmic ray forcing of the climate. However, despite the increasing evidence of its importance, solar climate variability is likely to remain controversial until a physical mechanism is established. Although this remains a mystery, observations suggest that cloud cover may be influenced by cosmic rays, which are modulated by the solar wind and, on longer time scales, by the geomagnetic field and by the galactic environment of Earth. Two different classes of microphysical mechanisms have been proposed to connect cosmic rays with clouds: firstly, an influence of cosmic rays on the production of cloud condensation nuclei and, secondly, an influence of cosmic rays on the global electrical circuit in the atmosphere and, in turn, on ice nucleation and other cloud microphysical processes. Considerable progress on understanding ion-aerosol-cloud processes has been made in recent years, and the results are suggestive of a physically- plausible link between cosmic rays, clouds and climate. However, a concerted effort is now required to carry out definitive laboratory measurements of the fundamental physical and chemical processes involved, and to evaluate their climatic significance with dedicated field observations and modelling studies.Comment: 42 pages, 19 figure
    corecore