7 research outputs found

    An Adversarial Super-Resolution Remedy for Radar Design Trade-offs

    Full text link
    Radar is of vital importance in many fields, such as autonomous driving, safety and surveillance applications. However, it suffers from stringent constraints on its design parametrization leading to multiple trade-offs. For example, the bandwidth in FMCW radars is inversely proportional with both the maximum unambiguous range and range resolution. In this work, we introduce a new method for circumventing radar design trade-offs. We propose the use of recent advances in computer vision, more specifically generative adversarial networks (GANs), to enhance low-resolution radar acquisitions into higher resolution counterparts while maintaining the advantages of the low-resolution parametrization. The capability of the proposed method was evaluated on the velocity resolution and range-azimuth trade-offs in micro-Doppler signatures and FMCW uniform linear array (ULA) radars, respectively.Comment: Accepted in EUSIPCO 2019, 5 page

    AeGAN: Time-Frequency Speech Denoising via Generative Adversarial Networks

    Full text link
    Automatic speech recognition (ASR) systems are of vital importance nowadays in commonplace tasks such as speech-to-text processing and language translation. This created the need for an ASR system that can operate in realistic crowded environments. Thus, speech enhancement is a valuable building block in ASR systems and other applications such as hearing aids, smartphones and teleconferencing systems. In this paper, a generative adversarial network (GAN) based framework is investigated for the task of speech enhancement, more specifically speech denoising of audio tracks. A new architecture based on CasNet generator and an additional feature-based loss are incorporated to get realistically denoised speech phonetics. Finally, the proposed framework is shown to outperform other learning and traditional model-based speech enhancement approaches.Comment: 5 pages, 4 figures and 2 Tables. Accepted in EUSIPCO 202

    Ground Weather RADAR Signal Characterization through Application of Convolutional Neural Networks

    Get PDF
    The 45th Weather Squadron supports the space launch efforts out of the Kennedy Space Center and Cape Canaveral Air Force Station for the Department of Defense, NASA, and commercial customers through weather assessments. Their assessment of the Lightning Launch Commit Criteria (LLCC) for avoidance of natural and rocket triggered lightning to launch vehicles is critical in approving space shuttle and rocket launches. The LLCC includes standards for cloud formations, which requires proper cloud identification and characterization methods. Accurate reflectivity measurements for ground weather radar are important to meet the LLCC for rocket triggered lightning. Current linear interpolation methods for ground weather radar gaps result in over-smoothing of the vertical gradient and over-estimate the risk of rocket triggered lightning, potentially resulting in costly, unnecessarily delayed launches. This research explores the application of existing interpolation methods using convolutional neural networks to perform two-dimensional image interpolation, called inpainting, into the three-dimensional weather radar scan domain. Results demonstrate that convolutional neural networks can improve the accuracy of cloud characterization over current interpolation methods, potentially resulting in fewer launch delays with substantial associated cost savings due to increased capability to meet the LLCC

    Coherent, super resolved radar beamforming using self-supervised learning

    Full text link
    High resolution automotive radar sensors are required in order to meet the high bar of autonomous vehicles needs and regulations. However, current radar systems are limited in their angular resolution causing a technological gap. An industry and academic trend to improve angular resolution by increasing the number of physical channels, also increases system complexity, requires sensitive calibration processes, lowers robustness to hardware malfunctions and drives higher costs. We offer an alternative approach, named Radar signal Reconstruction using Self Supervision (R2-S2), which significantly improves the angular resolution of a given radar array without increasing the number of physical channels. R2-S2 is a family of algorithms which use a Deep Neural Network (DNN) with complex range-Doppler radar data as input and trained in a self-supervised method using a loss function which operates in multiple data representation spaces. Improvement of 4x in angular resolution was demonstrated using a real-world dataset collected in urban and highway environments during clear and rainy weather conditions.Comment: 28 pages 10 figure

    Novel Hybrid-Learning Algorithms for Improved Millimeter-Wave Imaging Systems

    Full text link
    Increasing attention is being paid to millimeter-wave (mmWave), 30 GHz to 300 GHz, and terahertz (THz), 300 GHz to 10 THz, sensing applications including security sensing, industrial packaging, medical imaging, and non-destructive testing. Traditional methods for perception and imaging are challenged by novel data-driven algorithms that offer improved resolution, localization, and detection rates. Over the past decade, deep learning technology has garnered substantial popularity, particularly in perception and computer vision applications. Whereas conventional signal processing techniques are more easily generalized to various applications, hybrid approaches where signal processing and learning-based algorithms are interleaved pose a promising compromise between performance and generalizability. Furthermore, such hybrid algorithms improve model training by leveraging the known characteristics of radio frequency (RF) waveforms, thus yielding more efficiently trained deep learning algorithms and offering higher performance than conventional methods. This dissertation introduces novel hybrid-learning algorithms for improved mmWave imaging systems applicable to a host of problems in perception and sensing. Various problem spaces are explored, including static and dynamic gesture classification; precise hand localization for human computer interaction; high-resolution near-field mmWave imaging using forward synthetic aperture radar (SAR); SAR under irregular scanning geometries; mmWave image super-resolution using deep neural network (DNN) and Vision Transformer (ViT) architectures; and data-level multiband radar fusion using a novel hybrid-learning architecture. Furthermore, we introduce several novel approaches for deep learning model training and dataset synthesis.Comment: PhD Dissertation Submitted to UTD ECE Departmen
    corecore