815 research outputs found

    Efficient Execution of Sequential Instructions Streams by Physical Machines

    Get PDF
    Any computational model which relies on a physical system is likely to be subject to the fact that information density and speed have intrinsic, ultimate limits. The RAM model, and in particular the underlying assumption that memory accesses can be carried out in time independent from memory size itself, is not physically implementable. This work has developed in the field of limiting technology machines, in which it is somewhat provocatively assumed that technology has achieved the physical limits. The ultimate goal for this is to tackle the problem of the intrinsic latencies of physical systems by encouraging scalable organizations for processors and memories. An algorithmic study is presented, which depicts the implementation of high concurrency programs for SP and SPE, sequential machine models able to compute direct-flow programs in optimal time. Then, a novel pieplined, hierarchical memory organization is presented, with optimal latency and bandwidth for a physical system. In order to both take full advantage of the memory capabilities and exploit the available instruction level parallelism of the code to be executed, a novel processor model is developed. Particular care is put in devising an efficient information flow within the processor itself. Both designs are extremely scalable, as they are based on fixed capacity and fixed size nodes, which are connected as a multidimensional array. Performance analysis on the resulting machine design has led to the discovery that latencies internal to the processor can be the dominating source of complexity in instruction flow execution, which adds to the effects of processor-memory interaction. A characterization of instruction flows is then developed, which is based on the topology induced by instruction dependences

    Monad: Towards Cost-effective Specialization for Chiplet-based Spatial Accelerators

    Full text link
    Advanced packaging offers a new design paradigm in the post-Moore era, where many small chiplets can be assembled into a large system. Based on heterogeneous integration, a chiplet-based accelerator can be highly specialized for a specific workload, demonstrating extreme efficiency and cost reduction. To fully leverage this potential, it is critical to explore both the architectural design space for individual chiplets and different integration options to assemble these chiplets, which have yet to be fully exploited by existing proposals. This paper proposes Monad, a cost-aware specialization approach for chiplet-based spatial accelerators that explores the tradeoffs between PPA and fabrication costs. To evaluate a specialized system, we introduce a modeling framework considering the non-uniformity in dataflow, pipelining, and communications when executing multiple tensor workloads on different chiplets. We propose to combine the architecture and integration design space by uniformly encoding the design aspects for both spaces and exploring them with a systematic ML-based approach. The experiments demonstrate that Monad can achieve an average of 16% and 30% EDP reduction compared with the state-of-the-art chiplet-based accelerators, Simba and NN-Baton, respectively.Comment: To be published in ICCAD 202

    Design of testbed and emulation tools

    Get PDF
    The research summarized was concerned with the design of testbed and emulation tools suitable to assist in projecting, with reasonable accuracy, the expected performance of highly concurrent computing systems on large, complete applications. Such testbed and emulation tools are intended for the eventual use of those exploring new concurrent system architectures and organizations, either as users or as designers of such systems. While a range of alternatives was considered, a software based set of hierarchical tools was chosen to provide maximum flexibility, to ease in moving to new computers as technology improves and to take advantage of the inherent reliability and availability of commercially available computing systems

    Context flow architecture

    Get PDF

    Design and resource management of reconfigurable multiprocessors for data-parallel applications

    Get PDF
    FPGA (Field-Programmable Gate Array)-based custom reconfigurable computing machines have established themselves as low-cost and low-risk alternatives to ASIC (Application-Specific Integrated Circuit) implementations and general-purpose microprocessors in accelerating a wide range of computation-intensive applications. Most often they are Application Specific Programmable Circuiits (ASPCs), which are developer programmable instead of user programmable. The major disadvantages of ASPCs are minimal programmability, and significant time and energy overheads caused by required hardware reconfiguration when the problem size outnumbers the available reconfigurable resources; these problems are expected to become more serious with increases in the FPGA chip size. On the other hand, dominant high-performance computing systems, such as PC clusters and SMPs (Symmetric Multiprocessors), suffer from high communication latencies and/or scalability problems. This research introduces low-cost, user-programmable and reconfigurable MultiProcessor-on-a-Programmable-Chip (MPoPC) systems for high-performance, low-cost computing. It also proposes a relevant resource management framework that deals with performance, power consumption and energy issues. These semi-customized systems reduce significantly runtime device reconfiguration by employing userprogrammable processing elements that are reusable for different tasks in large, complex applications. For the sake of illustration, two different types of MPoPCs with hardware FPUs (floating-point units) are designed and implemented for credible performance evaluation and modeling: the coarse-grain MIMD (Multiple-Instruction, Multiple-Data) CG-MPoPC machine based on a processor IP (Intellectual Property) core and the mixed-mode (MIMD, SIMD or M-SIMD) variant-grain HERA (HEterogeneous Reconfigurable Architecture) machine. In addition to alleviating the above difficulties, MPoPCs can offer several performance and energy advantages to our data-parallel applications when compared to ASPCs; they are simpler and more scalable, and have less verification time and cost. Various common computation-intensive benchmark algorithms, such as matrix-matrix multiplication (MMM) and LU factorization, are studied and their parallel solutions are shown for the two MPoPCs. The performance is evaluated with large sparse real-world matrices primarily from power engineering. We expect even further performance gains on MPoPCs in the near future by employing ever improving FPGAs. The innovative nature of this work has the potential to guide research in this arising field of high-performance, low-cost reconfigurable computing. The largest advantage of reconfigurable logic lies in its large degree of hardware customization and reconfiguration which allows reusing the resources to match the computation and communication needs of applications. Therefore, a major effort in the presented design methodology for mixed-mode MPoPCs, like HERA, is devoted to effective resource management. A two-phase approach is applied. A mixed-mode weighted Task Flow Graph (w-TFG) is first constructed for any given application, where tasks are classified according to their most appropriate computing mode (e.g., SIMD or MIMD). At compile time, an architecture is customized and synthesized for the TFG using an Integer Linear Programming (ILP) formulation and a parameterized hardware component library. Various run-time scheduling schemes with different performanceenergy objectives are proposed. A system-level energy model for HERA, which is based on low-level implementation data and run-time statistics, is proposed to guide performance-energy trade-off decisions. A parallel power flow analysis technique based on Newton\u27s method is proposed and employed to verify the methodology

    Dynamic Systolization for Developing Multiprocessor Supercomputers

    Get PDF
    A dynamic network approach is introduced for developing reconfigurable, systolic arrays or wavefront processors; This allows one to design very powerful and flexible processors to be used in a general-purpose, reconfigurable, and fault-tolerant, multiprocessor computer system. The concepts of macro-dataflow and multitasking can be integrated to handle variable-resolution granularities in computationally intensive algorithms. A multiprocessor architecture, Remps, is proposed based on these design methodologies. The Remps architecture is generalized from the Cedar, HEP, Cray X- MP, Trac, NYU ultracomputer, S-l, Pumps, Chip, and SAM projects. Our goal is to provide a multiprocessor research model for developing design methodologies, multiprocessing and multitasking supports, dynamic systolic/wavefront array processors, interconnection networks, reconfiguration techniques, and performance analysis tools. These system design and operational techniques should be useful to those who are developing or evaluating multiprocessor supercomputers

    Pipelined Asynchronous High Level Synthesis for General Programs

    Get PDF
    High-level synthesis (HLS) translates algorithms from software programming language into hardware. We use the dataflow HLS methodology to translate programs into asynchronous circuits by implementing programs using asynchronous dataflow elements as hardware building blocks. We extend the prior work in dataflow synthesis in the following aspects:i) we propose Fluid to synthesize pipelined dataflow circuits for real-world programs with complex control flows, which are not supported in the previous work; ii) we propose PipeLink to permit pipelined access to shared resources in the dataflow circuit. Dataflow circuit results in distributed control and an implicitly pipelined implementation. However, resource sharing in the presence of pipelining is challenging in this context due to the absence of a global scheduler. Traditional solutions to this problem impose restrictions on pipelining to guarantee mutually exclusive access to the shared resource, but PipeLink removes such restrictions and can generate pipelined asynchronous dataflow circuits for shared function calls, pipelined memory accesses and function pointers; iii) we apply several dataflow optimizations to improve the quality of the synthesized dataflow circuits; iv) we implement our system (Fluid + PipeLink) on the LLVM compiler framework, which allows us to take advantage of the optimization efforts from the compiler community; v) we compare our system with a widely-used academic HLS tool and two commercial HLS tools. Compared to commercial (academic) HLS tools, our system results in 12X (20X) reduction in energy, 1.29X (1.64X) improvement in throughput, 1.27X (1.61X) improvement in latency at a cost of 2.4X (1.61X) increase in the area
    • …
    corecore