4 research outputs found

    Online Boosting Adaptive Learning under Concept Drift for Multistream Classification

    Full text link
    Multistream classification poses significant challenges due to the necessity for rapid adaptation in dynamic streaming processes with concept drift. Despite the growing research outcomes in this area, there has been a notable oversight regarding the temporal dynamic relationships between these streams, leading to the issue of negative transfer arising from irrelevant data. In this paper, we propose a novel Online Boosting Adaptive Learning (OBAL) method that effectively addresses this limitation by adaptively learning the dynamic correlation among different streams. Specifically, OBAL operates in a dual-phase mechanism, in the first of which we design an Adaptive COvariate Shift Adaptation (AdaCOSA) algorithm to construct an initialized ensemble model using archived data from various source streams, thus mitigating the covariate shift while learning the dynamic correlations via an adaptive re-weighting strategy. During the online process, we employ a Gaussian Mixture Model-based weighting mechanism, which is seamlessly integrated with the acquired correlations via AdaCOSA to effectively handle asynchronous drift. This approach significantly improves the predictive performance and stability of the target stream. We conduct comprehensive experiments on several synthetic and real-world data streams, encompassing various drifting scenarios and types. The results clearly demonstrate that OBAL achieves remarkable advancements in addressing multistream classification problems by effectively leveraging positive knowledge derived from multiple sources.Comment: AAAI 202

    Cost-Effective Retraining of Machine Learning Models

    Full text link
    It is important to retrain a machine learning (ML) model in order to maintain its performance as the data changes over time. However, this can be costly as it usually requires processing the entire dataset again. This creates a trade-off between retraining too frequently, which leads to unnecessary computing costs, and not retraining often enough, which results in stale and inaccurate ML models. To address this challenge, we propose ML systems that make automated and cost-effective decisions about when to retrain an ML model. We aim to optimize the trade-off by considering the costs associated with each decision. Our research focuses on determining whether to retrain or keep an existing ML model based on various factors, including the data, the model, and the predictive queries answered by the model. Our main contribution is a Cost-Aware Retraining Algorithm called Cara, which optimizes the trade-off over streams of data and queries. To evaluate the performance of Cara, we analyzed synthetic datasets and demonstrated that Cara can adapt to different data drifts and retraining costs while performing similarly to an optimal retrospective algorithm. We also conducted experiments with real-world datasets and showed that Cara achieves better accuracy than drift detection baselines while making fewer retraining decisions, ultimately resulting in lower total costs
    corecore