31 research outputs found

    Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS), phase 2. Volume 2: Telepresence project applications

    Get PDF
    The field of telepresence is defined and overviews of those capabilities that are now available, and those that will be required to support a NASA telepresence effort are provided. Investigation of NASA' plans and goals with regard to telepresence, extensive literature search for materials relating to relevant technologies, a description of these technologies and their state of the art, and projections for advances in these technologies over the next decade are included

    Robotic Manipulation and Capture in Space: A Survey

    Get PDF
    Space exploration and exploitation depend on the development of on-orbit robotic capabilities for tasks such as servicing of satellites, removing of orbital debris, or construction and maintenance of orbital assets. Manipulation and capture of objects on-orbit are key enablers for these capabilities. This survey addresses fundamental aspects of manipulation and capture, such as the dynamics of space manipulator systems (SMS), i.e., satellites equipped with manipulators, the contact dynamics between manipulator grippers/payloads and targets, and the methods for identifying properties of SMSs and their targets. Also, it presents recent work of sensing pose and system states, of motion planning for capturing a target, and of feedback control methods for SMS during motion or interaction tasks. Finally, the paper reviews major ground testing testbeds for capture operations, and several notable missions and technologies developed for capture of targets on-orbit

    Proceedings of the NASA Conference on Space Telerobotics, volume 4

    Get PDF
    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotic technology to the space systems planned for the 1990's and beyond. Volume 4 contains papers related to the following subject areas: manipulator control; telemanipulation; flight experiments (systems and simulators); sensor-based planning; robot kinematics, dynamics, and control; robot task planning and assembly; and research activities at the NASA Langley Research Center

    Fourth Annual Workshop on Space Operations Applications and Research (SOAR 90)

    Get PDF
    The proceedings of the SOAR workshop are presented. The technical areas included are as follows: Automation and Robotics; Environmental Interactions; Human Factors; Intelligent Systems; and Life Sciences. NASA and Air Force programmatic overviews and panel sessions were also held in each technical area

    Modeling and Control of a Flexible Space Robot to Capture a Tumbling Debris

    Get PDF
    RÉSUMÉ La conquête spatiale des 60 dernières années a généré une grande quantité d’objets à la dérive sur les orbites terrestres. Leur nombre grandissant constitue un danger omniprésent pour l’exploitation des satellites, et requiert aujourd’hui une intervention humaine pour réduire les risques de collision. En effet, l’estimation de leur croissance sur un horizon de 200 ans, connue sous le nom de “syndrôme de Kessler”, montre que l’accès à l’Espace sera grandement menacé si aucune mesure n’est prise pour endiguer cette prolifération. Le scientifique J.-C. Liou de la National Aeronautics and Space Administration (NASA) a montré que la tendance actuelle pourrait être stabilisée, voire inversée, si au moins cinq débris massifs étaient désorbités par an, tels que des satellites en fin de vie ou des étages supérieurs de lanceur. Parmi les nombreux concepts proposés pour cette mission, la robotique s’est imposée comme une des solutions les plus prometteuses grâce aux retours d’expérience des 30 dernières années. La Station Spatiale Internationale (ISS) possède déjà plusieurs bras robotiques opérationnels, et de nombreuses missions ont démontré le potentiel d’un tel système embarqué sur un satellite. Pour deux d’entre elles, des étapes fondamentales ont été validées pour le service en orbite,et s’avèrent être similaires aux problématiques de la désorbitation des débris. Cette thèse se concentre sur l’étape de capture d’un débris en rotation par un bras robotique ayant des segments flexibles. Cette phase comprend la planification de trajectoire et le contrôle du robot spatial, afin de saisir le point cible du débris de la façon la plus délicate possible. La validation des technologies nécessaires à un tel projet est quasiment impossible sur Terre, et requiert des moyens démesurés pour effectuer des essais en orbite. Par conséquent, la modélisation et la simulation de systèmes multi-corps flexibles est traitée en détails, et constitue une forte contribution de la thèse. À l’aide de ces modèles, une validation mixte est proposée par des essais expérimentaux, en reproduisant la cinématique en orbite par des manipulateurs industriels contrôlés par une simulation en temps réel. En résumé, cette thèse est construite autour des trois domaines suivants : la modélisation des robots spatiaux, le design de lois de contrôle, et leur validation sur un cas test. Dans un premier temps, la modélisation de robots spatiaux en condition d’apesanteur est développée pour une forme “en étoile”.----------ABSTRACT After 60 years of intensive satellite launches, the number of drifting objects in Earth orbits is reaching a shifting point, where human intervention is becoming necessary to reduce the threat of collision. Indeed, a 200 year forecast, known as the “Kessler syndrome”, states that space access will be greatly compromised if nothing is done to address the proliferation of these debris. Scientist J.-C. Liou from the National Aeronautics and Space Administration (NASA) has shown that the current trend could be reversed if at least five massive objects, such as dead satellites or rocket upper stages, were de-orbited each year. Among the various technical concepts considered for debris removal, robotics has emerged, over the last 30 years, as one of the most promising solutions. The International Space Station (ISS) already possesses fully operational robotic arms, and other missions have explored the potential of a manipulator embedded onto a satellite. During two of the latter, key capabilities have been demonstrated for on-orbit servicing, and prove to be equally useful for the purpose of debris removal. This thesis focuses on the close range capture of a tumbling debris by a robotic arm with light-weight flexible segments. This phase includes the motion planning and the control of a space robot, in order to smoothly catch a target point on the debris. The validation of such technologies is almost impossible on Earth and leads to prohibitive costs when performed on orbit. Therefore, the modeling and simulation of flexible multi-body systems has been investigated thoroughly, and is likewise a strong contribution of the thesis. Based on these models, an experimental validation is proposed by reproducing the on-orbit kinematics on a test bench made up of two industrial manipulators and driven by a real-time dynamic simulation. In a nutshell, the thesis is built around three main parts: the modeling of a space robot, the design of control laws, and their validation on a test case. The first part is dedicated to the flexible modeling of a space robot in conditions of weightlessness. A “star-shaped” multi-body system is considered, meaning that the rigid base carries various flexible appendages and robotic arms, assumed to be open mechanical chains only. The classic Newton-Euler and Lagrangian algorithms are brought together to account for the flexibility and to compute the dynamics in a numerically efficient way. The modeling step starts with the rigid fixed-base manipulators in order to introduce the notations, then, détails the flexible ones, and ends with the moving-base system to represent the space robots

    Large space structures and systems in the space station era: A bibliography with indexes

    Get PDF
    Bibliographies and abstracts are listed for 1219 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1990 and December 31, 1990. The purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Architecting a family of space tugs based on orbital transfer mission scenarios

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2004.Includes bibliographical references (p. 209-215).The consequences of satellite misplacement or collision with space debris reach far beyond the realm of money. The vast number of people affected by the loss of just one spacecraft indicates the vulnerability of our society to spacecraft failure. Thus, one of the biggest problems that satellite makers face today is the lack of a margin of error of any type. This thesis analyzes the business case for employing a special type of on-orbit servicer referred to as a space tug as an alternative to redundancy and replacement option. The main objective of a space tug is to prevent satellites from prematurely ending their missions. It was found to be more realistic to design a tug (or tugs) that service groups of satellites with similar orbital and physical characteristics, rather than to design a "monster" vehicle expected to traverse the huge distances between LEO and GEO and deal with satellites of all types and sizes. Thus, the approach of this work was based on the exploration of the entire satellite population currently in orbit around Earth and on the identification of potential target groups of satellites, along with mission scenarios for servicing each of these groups. Eight mission scenarios were identified as most necessary. Two of them-GEO communications satellite retirement and satellite rescue-were presented as case studies to illustrate the modeling approach suggested by this thesis. The ultimate objective of the research was to create a family of modular, economically feasible space tugs that used a common platform and shared various components, which would allow to provide relatively inexpensive and responsive on-demand tugging services. It was found that the optimal space tug for GEO retirement missions should be(cont.) initially parked in the GEO belt and be controlled via supervision. This space tug should have a 300-kg low capability grappling mechanism and utilize storable bipropellant (Isp = 325 sec). The maximum number of satellites the tug could visit was calculated to be 20. The minimum fee for the service was estimated to be 20.48M,andtheuncertaintyofcostestimationsshouldnotexceed20.48M, and the uncertainty of cost estimations should not exceed 7.5M for the nominal case. The optimal tug for satellite rescue missions was an ion electric spacecraft parked on Earth and controlled via supervision. It was not designed as reusable, and various types of grappling mechanisms or any number of fuel tanks could be attached to it, depending on mission requirements. Both architectures could use a common bus and share the same type of grappling devices.by Kalina K. Galabova.S.M

    Orbital construction support equipment

    Get PDF
    Approximately 200 separate construction steps were defined for the three solar power satellite (SPS) concepts. Detailed construction scenarios were developed which describe the specific tasks to be accomplished, and identify general equipment requirements. The scenarios were used to perform a functional analysis, which resulted in the definition of 100 distinct SPS elements. These elements are the components, parts, subsystems, or assemblies upon which construction activities take place. The major SPS elements for each configuration are shown. For those elements, 300 functional requirements were identified in seven generic processes. Cumulatively, these processes encompass all functions required during SPS construction/assembly. Individually each process is defined such that it includes a specific type of activity. Each SPS element may involve activities relating to any or all of the generic processes. The processes are listed, and examples of the requirements defined for a typical element are given

    Design and Experimental Evaluation of a Hybrid Wheeled-Leg Exploration Rover in the Context of Multi-Robot Systems

    Get PDF
    With this dissertation, the electromechanic design, implementation, locomotion control, and experimental evaluation of a novel type of hybrid wheeled-leg exploration rover are presented. The actively articulated suspension system of the rover is the basis for advanced locomotive capabilities of a mobile exploration robot. The developed locomotion control system abstracts the complex kinematics of the suspension system and provides platform control inputs usable by autonomous behaviors or human remote control. Design and control of the suspension system as well as experimentation with the resulting rover are in the focus of this thesis. The rover is part of a heterogeneous modular multi-robot exploration system with an aspired sample return mission to the lunar south pole or currently hard-to-access regions on Mars. The multi-robot system pursues a modular and reconfigurable design methodology. It combines heterogeneous robots with different locomotion capabilities for enhanced overall performance. Consequently, the design of the multi-robot system is presented as the frame of the rover developments. The requirements for the rover design originating from the deployment in a modular multi-robot system are accentuated and summarized in this thesis

    First Annual Workshop on Space Operations Automation and Robotics (SOAR 87)

    Get PDF
    Several topics relative to automation and robotics technology are discussed. Automation of checkout, ground support, and logistics; automated software development; man-machine interfaces; neural networks; systems engineering and distributed/parallel processing architectures; and artificial intelligence/expert systems are among the topics covered
    corecore