4 research outputs found

    Physical and Link Layer Implications in Vehicle Ad Hoc Networks

    Get PDF
    Vehicle Ad hoc Networks (V ANET) have been proposed to provide safety on the road and deliver road traffic information and route guidance to drivers along with commercial applications. However the challenges facing V ANET are numerous. Nodes move at high speeds, road side units and basestations are scarce, the topology is constrained by the road geometry and changes rapidly, and the number of nodes peaks suddenly in traffic jams. In this thesis we investigate the physical and link layers of V ANET and propose methods to achieve high data rates and high throughput. For the physical layer, we examine the use of Vertical BLAST (VB LAST) systems as they provide higher capacities than single antenna systems in rich fading environments. To study the applicability of VB LAST to VANET, a channel model was developed and verified using measurement data available in the literature. For no to medium line of sight, VBLAST systems provide high data rates. However the performance drops as the line of sight strength increases due to the correlation between the antennas. Moreover, the performance of VBLAST with training based channel estimation drops as the speed increases since the channel response changes rapidly. To update the channel state information matrix at the receiver, a channel tracking algorithm for flat fading channels was developed. The algorithm updates the channel matrix thus reducing the mean square error of the estimation and improving the bit error rate (BER). The analysis of VBLAST-OFDM systems showed they experience an error floor due to inter-carrier interference (lCI) which increases with speed, number of antennas transmitting and number of subcarriers used. The update algorithm was extended to VBLAST -OFDM systems and it showed improvements in BER performance but still experienced an error floor. An algorithm to equalise the ICI contribution of adjacent subcarriers was then developed and evaluated. The ICI equalisation algorithm reduces the error floor in BER as more subcarriers are equalised at the expense of more hardware complexity. The connectivity of V ANET was investigated and it was found that for single lane roads, car densities of 7 cars per communication range are sufficient to achieve high connectivity within the city whereas 12 cars per communication range are required for highways. Multilane roads require higher densities since cars tend to cluster in groups. Junctions and turns have lower connectivity than straight roads due to disconnections at the turns. Although higher densities improve the connectivity and, hence, the performance of the network layer, it leads to poor performance at the link layer. The IEEE 802.11 p MAC layer standard under development for V ANET uses a variant of Carrier Sense Multiple Access (CSMA). 802.11 protocols were analysed mathematically and via simulations and the results prove the saturation throughput of the basic access method drops as the number of nodes increases thus yielding very low throughput in congested areas. RTS/CTS access provides higher throughput but it applies only to unicast transmissions. To overcome the limitations of 802.11 protocols, we designed a protocol known as SOFT MAC which combines Space, Orthogonal Frequency and Time multiple access techniques. In SOFT MAC the road is divided into cells and each cell is allocated a unique group of subcarriers. Within a cell, nodes share the available subcarriers using a combination of TDMA and CSMA. The throughput analysis of SOFT MAC showed it has superior throughput compared to the basic access and similar to the RTS/CTS access of 802.11

    Link-Layer Cooperative Communication in Vehicular Networks

    Get PDF
    Vehicular ad hoc networks (VANETs) are a special kind of communication networks and possess unique characteristics as compared with general mobile ad hoc networks (MANETs), where vehicles communicate with each other or with stationary road side units. Hence, directly applying the existing communication protocols designed for MANETs may not be reliable and efficient in VANETs. Thus, this thesis presents link-layer cooperative frameworks to improve transmission reliability and network throughput over distributed TDMA MAC protocols for VANETs. We present a link-layer node cooperation scheme for VANETs, referred to as Cooperative ADHOC MAC (CAH-MAC). In CAH-MAC, neighboring nodes cooperate to utilize unused time slots to retransmit failed packets. Throughput improvement is achieved by using idle time slots that are wasted in the absence of node cooperation. In addition, as a packet is retransmitted earlier by a relay node, transmission delay and packet dropping rate are reduced. We study the effects of a dynamic networking environment on the performance of CAH-MAC. It is observed that, system performance degrades due to cooperation collisions. To tackle this challenge, we present an enhanced CAH-MAC (eCAH-MAC) scheme. In eCAH-MAC, using different types of packet and by delaying or suspending some relay transmissions, cooperation collisions can be avoided and cooperation opportunities can be efficiently utilize without disrupting the normal operations of the distributed TDMA MAC. We propose a node cooperation based makeup strategy for vehicular networks, referred to as cooperative relay broadcasting (CRB), such that neighboring nodes proactively rebroadcast the packet from a source node. An optimization framework is developed to provide an upper bound on the CRB performance with accurate channel information. Further, we propose a channel prediction scheme based on a two-state first-order Markov chain, to select the best relaying node for CRB. As packets are repeatedly broadcasted by the neighboring nodes before they expire, the proposed CRB framework provides a more reliable broadcast service as compared with existing approaches. The proposed node cooperation frameworks enhance the performance of distributed TDMA MAC and make it more robust to tackle VANET's dynamic networking conditions

    An Adaptive Channel Model for VBLAST in Vehicular Networks

    Get PDF
    The wireless transmission environment in vehicular ad hoc systems varies from line of sight with few surroundings to rich Rayleigh fading. An efficient communication system must adapt itself to these diverse conditions. Multiple antenna systems are known to provide superior performance compared to single antenna systems in terms of capacity and reliability. The correlation between the antennas has a great effect on the performance of MIMO systems. In this paper we introduce a novel adaptive channel model for MIMO-VBLAST systems in vehicular ad hoc networks. Using the proposed model, the correlation between the antennas was investigated. Although the line of sight is ideal for single antenna systems, it severely degrades the performance of VBLAST systems since it increases the correlation between the antennas. A channel update algorithm using single tap Kalman filters for VBLAST in flat fading channels has also been derived and evaluated. At 12 dB Es/N0, the new algorithm showed 50% reduction in the mean square error (MSE) between the actual channel and the corresponding updated estimate compared to the MSE without update. The computational requirement of the proposed algorithm for a p×q VBLAST is 6p×q real multiplications and 4p×q real additions
    corecore