1 research outputs found

    Topics in PDE-based Image Processing.

    Full text link
    The content of this dissertation lies at the intersection of analysis and applications of PDE to image processing and computer vision applications. In the first part of this thesis, we propose efficient and accurate algorithms for computing certain area preserving geometric motions of curves in the plane, such as area preserving motion by curvature. These schemes are based on a new class of diffusion generated motion algorithms using signed distance functions. In particular, they alternate two very simple and fast operations, namely convolution with the Gaussian kernel and construction of the distance function, to generate the desired geometric flow in an unconditionally stable manner. We present applications of these area preserving flows to large scale simulations of coarsening, and inverse problems. In the second part of this dissertation, we study the discrete version of a family of ill-posed, nonlinear diffusion equations of order 2n2n. The fourth order (n=2n=2) version of these equations constitutes our main motivation, as it appears prominently in image processing and computer vision literature. It was proposed by You and Kaveh as a model for denoising images while maintaining sharp object boundaries (edges). The second order equation (n=1n=1) corresponds to another famous model from image processing, namely Perona and Malik's anisotropic diffusion, and was studied in earlier papers. The equations studied in this paper are high order analogues of the Perona-Malik equation, and like the second order model, their continuum versions violate parabolicity and hence lack well-posedness theory. We follow a recent technique from Kohn and Otto, and prove a weak upper bound on the coarsening rate of the discrete in space version of these high order equations in any space dimension, for a large class of diffusivities. Numerical experiments indicate that the bounds are close to being optimal, and are typically observed.Ph.D.Applied and Interdisciplinary MathematicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/78774/1/mareva_1.pd
    corecore