264 research outputs found

    Source location of narrow band signals in multipath environments, with application to marine mammals

    Full text link
    Thesis (Ph.D.)--Boston UniversityPassive acoustic localization has benefited from many major developments and has become an increasingly important focus point in marine mammal research. Several challenges still remain. This work seeks to address several of these challenges such as tracking the calling depths of baleen whales. In this work, data from an array of widely spaced Marine Acoustic Recording Units (MARUs) was used to achieve three dimensional localization by combining the methods Time Difference of Arrival (TDOA) and Direct-Reflected Time Difference of Anival (DRTD) along with a newly developed autocorrelation technique. TDOA was applied to data for two dimensional (latitude and longitude) localization and depth was resolved using DRTD. Previously, DRTD had been limited to pulsed broadband signals, such as sperm whale or dolphin echolocation, where individual direct and reflected signals are separated in time. Due to the length of typical baleen whale vocalizations, individual multipath signal arrivals can overlap making time differences of arrival difficult to resolve. This problem can be solved using an autocorrelation, which can extract reflection information from overlapping signals. To establish this technique, a derivation was made to model the autocorrelation of a direct signal and its overlapping reflection. The model was exploited to derive performance limits allowing for prediction of the minimum resolvable direct-reflected time difference for a known signal type. The dependence on signal parameters (sweep rate, call duration) was also investigated. The model was then verified using both recorded and simulated data from two analysis cases for North Atlantic right whales (NARWs, Eubalaena glacialis) and humpback whales (Megaptera noveaengliae). The newly developed autocorrelation technique was then combined with DRTD and tested using data from playback transmissions to localize an acoustic transducer at a known depth and location. The combined DRTD-autocorrelation methods enabled calling depth and range estimations of a vocalizing NARW and humpback whale in two separate cases. The DRTD-autocorrelation method was then combined with TDOA to create a three dimensional track of a NARW in the Stellwagen Bank National Marine Sanctuary. Results from these experiments illustrated the potential of the combined methods to successfully resolve baleen calling depths in three dimensions

    Effects of errorless learning on the acquisition of velopharyngeal movement control

    Get PDF
    Session 1pSC - Speech Communication: Cross-Linguistic Studies of Speech Sound Learning of the Languages of Hong Kong (Poster Session)The implicit motor learning literature suggests a benefit for learning if errors are minimized during practice. This study investigated whether the same principle holds for learning velopharyngeal movement control. Normal speaking participants learned to produce hypernasal speech in either an errorless learning condition (in which the possibility for errors was limited) or an errorful learning condition (in which the possibility for errors was not limited). Nasality level of the participants’ speech was measured by nasometer and reflected by nasalance scores (in %). Errorless learners practiced producing hypernasal speech with a threshold nasalance score of 10% at the beginning, which gradually increased to a threshold of 50% at the end. The same set of threshold targets were presented to errorful learners but in a reversed order. Errors were defined by the proportion of speech with a nasalance score below the threshold. The results showed that, relative to errorful learners, errorless learners displayed fewer errors (50.7% vs. 17.7%) and a higher mean nasalance score (31.3% vs. 46.7%) during the acquisition phase. Furthermore, errorless learners outperformed errorful learners in both retention and novel transfer tests. Acknowledgment: Supported by The University of Hong Kong Strategic Research Theme for Sciences of Learning © 2012 Acoustical Society of Americapublished_or_final_versio

    Optimally Distributed Receiver Placements Versus an Environmentally Aware Source: New England Shelf Break Acoustics Signals and Noise Experiment

    Get PDF
    This article describes the results of the Spring of 2021 New England Shelf Break Acoustics (NESBA) Signals and Noise experiment as they pertain to the optimization of a field of passive receivers versus an environmentally aware source with end-state goals. A discrete optimization has been designed and used to demonstrate providing an acoustic system operator with actionable guidance relating to optimally distributed receiver locations and depths and likely mean source detection times and associated uncertainties as a function of source and receiver levels of environmental awareness. The uncertainties considered here are those due to the imperfect spatial and temporal sensing of the water column, ambient noise (AN), and the seabed, and the impact this has on ocean forecasting and acoustic performance prediction accuracy. As a part of the NESBA experiment, high-resolution (1 km spatial) regional Navy Coastal Ocean Model ensemble forecasts were generated to capture oceanographic variability and uncertainty. Passive AN-based seabed measurements were conducted to estimate seabed properties including variability and uncertainty. Extensive AN and conductivity, temperature, and depth measurements were also conducted. In this article, operationally relevant metrics are employed to estimate the potential value-added of optimal receiver location and depth placements as a function of source end-state goals and assumed level of environmental awareness. A concept for generating stochastic acoustic prediction metrics and associated optimally distributed receiver locations and depths in an operational environment is proposed

    Predicting room acoustical behavior with the ODEON computer model

    Get PDF
    • …
    corecore