200 research outputs found

    Solving Multiple-Block Separable Convex Minimization Problems Using Two-Block Alternating Direction Method of Multipliers

    Full text link
    In this paper, we consider solving multiple-block separable convex minimization problems using alternating direction method of multipliers (ADMM). Motivated by the fact that the existing convergence theory for ADMM is mostly limited to the two-block case, we analyze in this paper, both theoretically and numerically, a new strategy that first transforms a multi-block problem into an equivalent two-block problem (either in the primal domain or in the dual domain) and then solves it using the standard two-block ADMM. In particular, we derive convergence results for this two-block ADMM approach to solve multi-block separable convex minimization problems, including an improved O(1/\epsilon) iteration complexity result. Moreover, we compare the numerical efficiency of this approach with the standard multi-block ADMM on several separable convex minimization problems which include basis pursuit, robust principal component analysis and latent variable Gaussian graphical model selection. The numerical results show that the multiple-block ADMM, although lacks theoretical convergence guarantees, typically outperforms two-block ADMMs

    Linearized Alternating Direction Method with Parallel Splitting and Adaptive Penalty for Separable Convex Programs in Machine Learning

    Full text link
    Many problems in machine learning and other fields can be (re)for-mulated as linearly constrained separable convex programs. In most of the cases, there are multiple blocks of variables. However, the traditional alternating direction method (ADM) and its linearized version (LADM, obtained by linearizing the quadratic penalty term) are for the two-block case and cannot be naively generalized to solve the multi-block case. So there is great demand on extending the ADM based methods for the multi-block case. In this paper, we propose LADM with parallel splitting and adaptive penalty (LADMPSAP) to solve multi-block separable convex programs efficiently. When all the component objective functions have bounded subgradients, we obtain convergence results that are stronger than those of ADM and LADM, e.g., allowing the penalty parameter to be unbounded and proving the sufficient and necessary conditions} for global convergence. We further propose a simple optimality measure and reveal the convergence rate of LADMPSAP in an ergodic sense. For programs with extra convex set constraints, with refined parameter estimation we devise a practical version of LADMPSAP for faster convergence. Finally, we generalize LADMPSAP to handle programs with more difficult objective functions by linearizing part of the objective function as well. LADMPSAP is particularly suitable for sparse representation and low-rank recovery problems because its subproblems have closed form solutions and the sparsity and low-rankness of the iterates can be preserved during the iteration. It is also highly parallelizable and hence fits for parallel or distributed computing. Numerical experiments testify to the advantages of LADMPSAP in speed and numerical accuracy.Comment: Preliminary version published on Asian Conference on Machine Learning 201

    A Splitting Augmented Lagrangian Method for Low Multilinear-Rank Tensor Recovery

    Full text link
    This paper studies a recovery task of finding a low multilinear-rank tensor that fulfills some linear constraints in the general settings, which has many applications in computer vision and graphics. This problem is named as the low multilinear-rank tensor recovery problem. The variable splitting technique and convex relaxation technique are used to transform this problem into a tractable constrained optimization problem. Considering the favorable structure of the problem, we develop a splitting augmented Lagrangian method to solve the resulting problem. The proposed algorithm is easily implemented and its convergence can be proved under some conditions. Some preliminary numerical results on randomly generated and real completion problems show that the proposed algorithm is very effective and robust for tackling the low multilinear-rank tensor completion problem

    On the Global Linear Convergence of the ADMM with Multi-Block Variables

    Full text link
    The alternating direction method of multipliers (ADMM) has been widely used for solving structured convex optimization problems. In particular, the ADMM can solve convex programs that minimize the sum of NN convex functions with NN-block variables linked by some linear constraints. While the convergence of the ADMM for N=2N=2 was well established in the literature, it remained an open problem for a long time whether or not the ADMM for N≥3N \ge 3 is still convergent. Recently, it was shown in [3] that without further conditions the ADMM for N≥3N\ge 3 may actually fail to converge. In this paper, we show that under some easily verifiable and reasonable conditions the global linear convergence of the ADMM when N≥3N\geq 3 can still be assured, which is important since the ADMM is a popular method for solving large scale multi-block optimization models and is known to perform very well in practice even when N≥3N\ge 3. Our study aims to offer an explanation for this phenomenon
    • …
    corecore