72 research outputs found

    Mixed signal multiply and adder parallel circuit for deep learning convolution operations

    Get PDF
    This work presents a new analog architecture to perform image convolution for deep learning purposes in CMOS imagers in the analog domain. The architecture is focused to reduce both power dissipation and data transfer between memory and the analog operators. It uses mixed signal multiply and add operators arranged following a row-parallel architecture in order to be fully scalable for different CMOS imager sizes. The multiplier circuit used is based on a current mode architecture to multiply the value of analog inputs by the digital stored weights and produce current mode outputs which are then added to obtain the convolution result. A digital control circuit manages the pixel readout and the multiply and add operations. The architecture is demonstrated performing 3x3 convolutions on 64x64 images with a padding equal to 1. Convolution weights are locally stored as 4-bit digital values. The circuit has been synthesized in 110 nm CMOS technology. For this configuration, the simulation results show that the circuit is able to perform a whole convolution in 32 us and achieve an efficiency of 2.13 TOPS/W. These results can be extrapolated to larger CMOS imagers and different mask sizes.This work has been partially funded by Spanish government through project RTI2018-097088-B-C33 (MINECO/FEDER, UE

    Energy-Efficient Recurrent Neural Network Accelerators for Real-Time Inference

    Full text link
    Over the past decade, Deep Learning (DL) and Deep Neural Network (DNN) have gone through a rapid development. They are now vastly applied to various applications and have profoundly changed the life of hu- man beings. As an essential element of DNN, Recurrent Neural Networks (RNN) are helpful in processing time-sequential data and are widely used in applications such as speech recognition and machine translation. RNNs are difficult to compute because of their massive arithmetic operations and large memory footprint. RNN inference workloads used to be executed on conventional general-purpose processors including Central Processing Units (CPU) and Graphics Processing Units (GPU); however, they have un- necessary hardware blocks for RNN computation such as branch predictor, caching system, making them not optimal for RNN processing. To accelerate RNN computations and outperform the performance of conventional processors, previous work focused on optimization methods on both software and hardware. On the software side, previous works mainly used model compression to reduce the memory footprint and the arithmetic operations of RNNs. On the hardware side, previous works also designed domain-specific hardware accelerators based on Field Pro- grammable Gate Arrays (FPGA) or Application Specific Integrated Circuits (ASIC) with customized hardware pipelines optimized for efficient pro- cessing of RNNs. By following this software-hardware co-design strategy, previous works achieved at least 10X speedup over conventional processors. Many previous works focused on achieving high throughput with a large batch of input streams. However, in real-time applications, such as gaming Artificial Intellegence (AI), dynamical system control, low latency is more critical. Moreover, there is a trend of offloading neural network workloads to edge devices to provide a better user experience and privacy protection. Edge devices, such as mobile phones and wearable devices, are usually resource-constrained with a tight power budget. They require RNN hard- ware that is more energy-efficient to realize both low-latency inference and long battery life. Brain neurons have sparsity in both the spatial domain and time domain. Inspired by this human nature, previous work mainly explored model compression to induce spatial sparsity in RNNs. The delta network algorithm alternatively induces temporal sparsity in RNNs and can save over 10X arithmetic operations in RNNs proven by previous works. In this work, we have proposed customized hardware accelerators to exploit temporal sparsity in Gated Recurrent Unit (GRU)-RNNs and Long Short-Term Memory (LSTM)-RNNs to achieve energy-efficient real-time RNN inference. First, we have proposed DeltaRNN, the first-ever RNN accelerator to exploit temporal sparsity in GRU-RNNs. DeltaRNN has achieved 1.2 TOp/s effective throughput with a batch size of 1, which is 15X higher than its related works. Second, we have designed EdgeDRNN to accelerate GRU-RNN edge inference. Compared to DeltaRNN, EdgeDRNN does not rely on on-chip memory to store RNN weights and focuses on reducing off-chip Dynamic Random Access Memory (DRAM) data traffic using a more scalable architecture. EdgeDRNN have realized real-time inference of large GRU-RNNs with submillisecond latency and only 2.3 W wall plug power consumption, achieving 4X higher energy efficiency than commercial edge AI platforms like NVIDIA Jetson Nano. Third, we have used DeltaRNN to realize the first-ever continuous speech recognition sys- tem with the Dynamic Audio Sensor (DAS) as the front-end. The DAS is a neuromorphic event-driven sensor that produces a stream of asyn- chronous events instead of audio data sampled at a fixed sample rate. We have also showcased how an RNN accelerator can be integrated with an event-driven sensor on the same chip to realize ultra-low-power Keyword Spotting (KWS) on the extreme edge. Fourth, we have used EdgeDRNN to control a powered robotic prosthesis using an RNN controller to replace a conventional proportional–derivative (PD) controller. EdgeDRNN has achieved 21 μs latency of running the RNN controller and could maintain stable control of the prosthesis. We have used DeltaRNN and EdgeDRNN to solve these problems to prove their value in solving real-world problems. Finally, we have applied the delta network algorithm on LSTM-RNNs and have combined it with a customized structured pruning method, called Column-Balanced Targeted Dropout (CBTD), to induce spatio-temporal sparsity in LSTM-RNNs. Then, we have proposed another FPGA-based accelerator called Spartus, the first RNN accelerator that exploits spatio- temporal sparsity. Spartus achieved 9.4 TOp/s effective throughput with a batch size of 1, the highest among present FPGA-based RNN accelerators with a power budget around 10 W. Spartus can complete the inference of an LSTM layer having 5 million parameters within 1 μs

    Neural Network Methods for Radiation Detectors and Imaging

    Full text link
    Recent advances in image data processing through machine learning and especially deep neural networks (DNNs) allow for new optimization and performance-enhancement schemes for radiation detectors and imaging hardware through data-endowed artificial intelligence. We give an overview of data generation at photon sources, deep learning-based methods for image processing tasks, and hardware solutions for deep learning acceleration. Most existing deep learning approaches are trained offline, typically using large amounts of computational resources. However, once trained, DNNs can achieve fast inference speeds and can be deployed to edge devices. A new trend is edge computing with less energy consumption (hundreds of watts or less) and real-time analysis potential. While popularly used for edge computing, electronic-based hardware accelerators ranging from general purpose processors such as central processing units (CPUs) to application-specific integrated circuits (ASICs) are constantly reaching performance limits in latency, energy consumption, and other physical constraints. These limits give rise to next-generation analog neuromorhpic hardware platforms, such as optical neural networks (ONNs), for high parallel, low latency, and low energy computing to boost deep learning acceleration

    Cross-Layer Automated Hardware Design for Accuracy-Configurable Approximate Computing

    Get PDF
    Approximate Computing trades off computation accuracy against performance or energy efficiency. It is a design paradigm that arose in the last decade as an answer to diminishing returns from Dennard\u27s scaling and a shift in the prominent workloads. A range of modern workloads, categorized mainly as recognition, mining, and synthesis, features an inherent tolerance to approximations. Their characteristics, such as redundancies in their input data and robust-to-noise algorithms, allow them to produce outputs of acceptable quality, despite an approximation in some of their computations. Approximate Computing leverages the application tolerance by relaxing the exactness in computation towards primary design goals of increasing performance or improving energy efficiency. Existing techniques span across the abstraction layers of computer systems where cross-layer techniques are shown to offer a larger design space and yield higher savings. Currently, the majority of the existing work aims at meeting a single accuracy. The extent of approximation tolerance, however, significantly varies with a change in input characteristics and applications. In this dissertation, methods and implementations are presented for cross-layer and automated design of accuracy-configurable Approximate Computing to maximally exploit the performance and energy benefits. In particular, this dissertation addresses the following challenges and introduces novel contributions: A main Approximate Computing category in hardware is to scale either voltage or frequency beyond the safe limits for power or performance benefits, respectively. The rationale is that timing errors would be gradual and for an initial range tolerable. This scaling enables a fine-grain accuracy-configurability by varying the timing error occurrence. However, conventional synthesis tools aim at meeting a single delay for all paths within the circuit. Subsequently, with voltage or frequency scaling, either all paths succeed, or a large number of paths fail simultaneously, with a steep increase in error rate and magnitude. This dissertation presents an automated method for minimizing path delays by individually constraining the primary outputs of combinational circuits. As a result, it reduces the number of failing paths and makes the timing errors significantly more gradual, and also rarer and smaller on average. Additionally, it reveals that delays can be significantly reduced towards the least significant bit (LSB) and allows operating at a higher frequency when small operands are computed. Precision scaling, i.e., reducing the representation of data and its accuracy is widely used in multiple abstraction layers in Approximate Computing. Reducing data precision also reduces the transistor toggles, and therefore the dynamic power consumption. Application and architecture level precision scaling results in using only LSBs of the circuit. Arithmetic circuits often have less complexity and logic depth in LSBs compared to most significant bits (MSB). To take advantage of this circuit property, a delay-altering synthesis methodology is proposed. The method finds energy-optimal delay values under configurable precision usage and assigns them to primary outputs used for different precisions. Thereby, it enables dynamic frequency-precision scalable circuits for energy efficiency. Within the hardware architecture, it is possible to instantiate multiple units with the same functionality with different fixed approximation levels, where each block benefits from having fewer transistors and also synthesis relaxations. These blocks can be selected dynamically and thus allow to configure the accuracy during runtime. Instantiating such approximate blocks can be a lower dynamic power but higher area and leakage cost alternative to the current state-of-the-art gating mechanisms which switch off a group of paths in the circuit to reduce the toggling activity. Jointly, instantiating multiple blocks and gating mechanisms produce a large design space of accuracy-configurable hardware, where energy-optimal solutions require a cross-layer search in architecture and circuit levels. To that end, an approximate hardware synthesis methodology is proposed with joint optimizations in architecture and circuit for dynamic accuracy scaling, and thereby it enables energy vs. area trade-offs

    Energy-Efficient, Flexible and Fast Architectures for Deep Convolutional Neural Network Acceleration

    Get PDF
    RÉSUMÉ: Les méthodes basées sur l'apprentissage profond, et en particulier les réseaux de neurones convolutifs (CNN), ont révolutionné le domaine de la vision par ordinateur. Alors que jusqu'en 2012, les méthodes de traitement d'image traditionnelles les plus précises pouvaient atteindre 26% d'erreurs dans la reconnaissance d'images sur l'étalon normalisé et bien connu ImageNet, une méthode basée sur un CNN a considérablement réduit l'erreur à 16%. En faisant évoluer la structure des CNN, les méthodes actuelles basées sur des CNN atteignent désormais couramment des taux d'erreur inférieurs à 3%, dépassant souvent la précision humaine. Les CNN se composent de nombreuses couches convolutives, chacune effectuant des opérations de convolution complexes de haute dimension. Pour obtenir une précision élevée en reconnaissance d’images, les CNN modernes empilent de nombreuses couches convolutives, ce qui augmente considérablement la diversité des motifs de calcul entre les couches. Ce haut niveau de complexité dans les CNN implique un nombre massif de paramètres et de calculs.----------ABSTRACT: Deep learning-based methods, and specifically Convolutional Neural Networks (CNNs), have revolutionized the field of computer vision. While until 2012, the most accurate traditional image processing methods could reach 26% errors in recognizing images on the standardized and well-known ImageNet benchmark, a CNN-based method dramatically reduced the error to 16%. By evolving CNNs structures, current CNN-based methods now routinely achieve error rates below 3%, often outperforming human level accuracy. CNNs consist of many convolutional layers each performing high dimensional complex convolution operations. To achieve high image recognition accuracy, modern CNNs stack many convolutional layers which dramatically increases computation pattern diversity across layers. This high level of complexity in CNNs implies massive numbers of parameters and computations. Since mobile processors are not designed to perform massive computations, deploying CNNs on portable and mobile devices is challenging

    2022 roadmap on neuromorphic computing and engineering

    Full text link
    Modern computation based on von Neumann architecture is now a mature cutting-edge science. In the von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale with 1018^{18} calculations each second. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex data as our brain does. These needs can be addressed by neuromorphic computing systems which are inspired by the biological concepts of the human brain. This new generation of computers has the potential to be used for the storage and processing of large amounts of digital information with much lower power consumption than conventional processors. Among their potential future applications, an important niche is moving the control from data centers to edge devices. The aim of this roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the challenges and opportunities that the future holds in the major areas of neuromorphic technology, namely materials, devices, neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The roadmap is a collection of perspectives where leading researchers in the neuromorphic community provide their own view about the current state and the future challenges for each research area. We hope that this roadmap will be a useful resource by providing a concise yet comprehensive introduction to readers outside this field, for those who are just entering the field, as well as providing future perspectives for those who are well established in the neuromorphic computing community

    Neural network methods for radiation detectors and imaging

    Get PDF
    Recent advances in image data proccesing through deep learning allow for new optimization and performance-enhancement schemes for radiation detectors and imaging hardware. This enables radiation experiments, which includes photon sciences in synchrotron and X-ray free electron lasers as a subclass, through data-endowed artificial intelligence. We give an overview of data generation at photon sources, deep learning-based methods for image processing tasks, and hardware solutions for deep learning acceleration. Most existing deep learning approaches are trained offline, typically using large amounts of computational resources. However, once trained, DNNs can achieve fast inference speeds and can be deployed to edge devices. A new trend is edge computing with less energy consumption (hundreds of watts or less) and real-time analysis potential. While popularly used for edge computing, electronic-based hardware accelerators ranging from general purpose processors such as central processing units (CPUs) to application-specific integrated circuits (ASICs) are constantly reaching performance limits in latency, energy consumption, and other physical constraints. These limits give rise to next-generation analog neuromorhpic hardware platforms, such as optical neural networks (ONNs), for high parallel, low latency, and low energy computing to boost deep learning acceleration (LA-UR-23-32395)
    corecore