28,560 research outputs found

    Discrete logarithms in curves over finite fields

    Get PDF
    A survey on algorithms for computing discrete logarithms in Jacobians of curves over finite fields

    Solving discrete logarithms on a 170-bit MNT curve by pairing reduction

    Get PDF
    Pairing based cryptography is in a dangerous position following the breakthroughs on discrete logarithms computations in finite fields of small characteristic. Remaining instances are built over finite fields of large characteristic and their security relies on the fact that the embedding field of the underlying curve is relatively large. How large is debatable. The aim of our work is to sustain the claim that the combination of degree 3 embedding and too small finite fields obviously does not provide enough security. As a computational example, we solve the DLP on a 170-bit MNT curve, by exploiting the pairing embedding to a 508-bit, degree-3 extension of the base field.Comment: to appear in the Lecture Notes in Computer Science (LNCS

    The ElGamal cryptosystem over circulant matrices

    Get PDF
    In this paper we study extensively the discrete logarithm problem in the group of non-singular circulant matrices. The emphasis of this study was to find the exact parameters for the group of circulant matrices for a secure implementation. We tabulate these parameters. We also compare the discrete logarithm problem in the group of circulant matrices with the discrete logarithm problem in finite fields and with the discrete logarithm problem in the group of rational points of an elliptic curve

    Computing cardinalities of Q-curve reductions over finite fields

    Get PDF
    We present a specialized point-counting algorithm for a class of elliptic curves over F\_{p^2} that includes reductions of quadratic Q-curves modulo inert primes and, more generally, any elliptic curve over F\_{p^2} with a low-degree isogeny to its Galois conjugate curve. These curves have interesting cryptographic applications. Our algorithm is a variant of the Schoof--Elkies--Atkin (SEA) algorithm, but with a new, lower-degree endomorphism in place of Frobenius. While it has the same asymptotic asymptotic complexity as SEA, our algorithm is much faster in practice.Comment: To appear in the proceedings of ANTS-XII. Added acknowledgement of Drew Sutherlan
    • …
    corecore