1,611 research outputs found

    Learnable PINs: Cross-Modal Embeddings for Person Identity

    Full text link
    We propose and investigate an identity sensitive joint embedding of face and voice. Such an embedding enables cross-modal retrieval from voice to face and from face to voice. We make the following four contributions: first, we show that the embedding can be learnt from videos of talking faces, without requiring any identity labels, using a form of cross-modal self-supervision; second, we develop a curriculum learning schedule for hard negative mining targeted to this task, that is essential for learning to proceed successfully; third, we demonstrate and evaluate cross-modal retrieval for identities unseen and unheard during training over a number of scenarios and establish a benchmark for this novel task; finally, we show an application of using the joint embedding for automatically retrieving and labelling characters in TV dramas.Comment: To appear in ECCV 201

    What do End-to-End Speech Models Learn about Speaker, Language and Channel Information? A Layer-wise and Neuron-level Analysis

    Full text link
    End-to-end DNN architectures have pushed the state-of-the-art in speech technologies, as well as in other spheres of AI, leading researchers to train more complex and deeper models. These improvements came at the cost of transparency. DNNs are innately opaque and difficult to interpret. We no longer understand what features are learned, where they are preserved, and how they inter-operate. Such an analysis is important for better model understanding, debugging and to ensure fairness in ethical decision making. In this work, we analyze the representations trained within deep speech models, towards the task of speaker recognition, dialect identification and reconstruction of masked signals. We carry a layer- and neuron-level analysis on the utterance-level representations captured within pretrained speech models for speaker, language and channel properties. We study: is this information captured in the learned representations? where is it preserved? how is it distributed? and can we identify a minimal subset of network that posses this information. Using diagnostic classifiers, we answered these questions. Our results reveal: (i) channel and gender information is omnipresent and is redundantly distributed (ii) complex properties such as dialectal information is encoded only in the task-oriented pretrained network and is localised in the upper layers (iii) a minimal subset of neurons can be extracted to encode the predefined property (iv) salient neurons are sometimes shared between properties and can highlights presence of biases in the network. Our cross-architectural comparison indicates that (v) the pretrained models captures speaker-invariant information and (vi) the pretrained CNNs models are competitive to the Transformers for encoding information for the studied properties. To the best of our knowledge, this is the first study to investigate neuron analysis on the speech models.Comment: Submitted to CSL. Keywords: Speech, Neuron Analysis, Interpretibility, Diagnostic Classifier, AI explainability, End-to-End Architectur

    Disentangling Prosody Representations with Unsupervised Speech Reconstruction

    Full text link
    Human speech can be characterized by different components, including semantic content, speaker identity and prosodic information. Significant progress has been made in disentangling representations for semantic content and speaker identity in Automatic Speech Recognition (ASR) and speaker verification tasks respectively. However, it is still an open challenging research question to extract prosodic information because of the intrinsic association of different attributes, such as timbre and rhythm, and because of the need for supervised training schemes to achieve robust large-scale and speaker-independent ASR. The aim of this paper is to address the disentanglement of emotional prosody from speech based on unsupervised reconstruction. Specifically, we identify, design, implement and integrate three crucial components in our proposed speech reconstruction model Prosody2Vec: (1) a unit encoder that transforms speech signals into discrete units for semantic content, (2) a pretrained speaker verification model to generate speaker identity embeddings, and (3) a trainable prosody encoder to learn prosody representations. We first pretrain the Prosody2Vec representations on unlabelled emotional speech corpora, then fine-tune the model on specific datasets to perform Speech Emotion Recognition (SER) and Emotional Voice Conversion (EVC) tasks. Both objective (weighted and unweighted accuracies) and subjective (mean opinion score) evaluations on the EVC task suggest that Prosody2Vec effectively captures general prosodic features that can be smoothly transferred to other emotional speech. In addition, our SER experiments on the IEMOCAP dataset reveal that the prosody features learned by Prosody2Vec are complementary and beneficial for the performance of widely used speech pretraining models and surpass the state-of-the-art methods when combining Prosody2Vec with HuBERT representations.Comment: Accepted by IEEE/ACM Transactions on Audio, Speech, and Language Processin

    End-to-End Speech Recognition and Disfluency Removal with Acoustic Language Model Pretraining

    Full text link
    The SOTA in transcription of disfluent and conversational speech has in recent years favored two-stage models, with separate transcription and cleaning stages. We believe that previous attempts at end-to-end disfluency removal have fallen short because of the representational advantage that large-scale language model pretraining has given to lexical models. Until recently, the high dimensionality and limited availability of large audio datasets inhibited the development of large-scale self-supervised pretraining objectives for learning effective audio representations, giving a relative advantage to the two-stage approach, which utilises pretrained representations for lexical tokens. In light of recent successes in large scale audio pretraining, we revisit the performance comparison between two-stage and end-to-end model and find that audio based language models pretrained using weak self-supervised objectives match or exceed the performance of similarly trained two-stage models, and further, that the choice of pretraining objective substantially effects a model's ability to be adapted to the disfluency removal task

    On the Robustness of Arabic Speech Dialect Identification

    Full text link
    Arabic dialect identification (ADI) tools are an important part of the large-scale data collection pipelines necessary for training speech recognition models. As these pipelines require application of ADI tools to potentially out-of-domain data, we aim to investigate how vulnerable the tools may be to this domain shift. With self-supervised learning (SSL) models as a starting point, we evaluate transfer learning and direct classification from SSL features. We undertake our evaluation under rich conditions, with a goal to develop ADI systems from pretrained models and ultimately evaluate performance on newly collected data. In order to understand what factors contribute to model decisions, we carry out a careful human study of a subset of our data. Our analysis confirms that domain shift is a major challenge for ADI models. We also find that while self-training does alleviate this challenges, it may be insufficient for realistic conditions

    Leveraging Multilingual Self-Supervised Pretrained Models for Sequence-to-Sequence End-to-End Spoken Language Understanding

    Full text link
    A number of methods have been proposed for End-to-End Spoken Language Understanding (E2E-SLU) using pretrained models, however their evaluation often lacks multilingual setup and tasks that require prediction of lexical fillers, such as slot filling. In this work, we propose a unified method that integrates multilingual pretrained speech and text models and performs E2E-SLU on six datasets in four languages in a generative manner, including the prediction of lexical fillers. We investigate how the proposed method can be improved by pretraining on widely available speech recognition data using several training objectives. Pretraining on 7000 hours of multilingual data allows us to outperform the state-of-the-art ultimately on two SLU datasets and partly on two more SLU datasets. Finally, we examine the cross-lingual capabilities of the proposed model and improve on the best known result on the PortMEDIA-Language dataset by almost half, achieving a Concept/Value Error Rate of 23.65%.Comment: IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU) 202

    A Study of Low-Resource Speech Commands Recognition based on Adversarial Reprogramming

    Full text link
    In this study, we propose a novel adversarial reprogramming (AR) approach for low-resource spoken command recognition (SCR), and build an AR-SCR system. The AR procedure aims to modify the acoustic signals (from the target domain) to repurpose a pretrained SCR model (from the source domain). To solve the label mismatches between source and target domains, and further improve the stability of AR, we propose a novel similarity-based label mapping technique to align classes. In addition, the transfer learning (TL) technique is combined with the original AR process to improve the model adaptation capability. We evaluate the proposed AR-SCR system on three low-resource SCR datasets, including Arabic, Lithuanian, and dysarthric Mandarin speech. Experimental results show that with a pretrained AM trained on a large-scale English dataset, the proposed AR-SCR system outperforms the current state-of-the-art results on Arabic and Lithuanian speech commands datasets, with only a limited amount of training data.Comment: Submitted to ICASSP 202
    • …
    corecore