7 research outputs found

    New Combinatorial Properties and Algorithms for AVL Trees

    Get PDF
    In this thesis, new properties of AVL trees and a new partitioning of binary search trees named core partitioning scheme are discussed, this scheme is applied to three binary search trees namely AVL trees, weight-balanced trees, and plain binary search trees. We introduce the core partitioning scheme, which maintains a balanced search tree as a dynamic collection of complete balanced binary trees called cores. Using this technique we achieve the same theoretical efficiency of modern cache-oblivious data structures by using classic data structures such as weight-balanced trees or height balanced trees (e.g. AVL trees). We preserve the original topology and algorithms of the given balanced search tree using a simple post-processing with guaranteed performance to completely rebuild the changed cores (possibly all of them) after each update. Using our core partitioning scheme, we simultaneously achieve good memory allocation, space-efficient representation, and cache-obliviousness. We also apply this scheme to arbitrary binary search trees which can be unbalanced and we produce a new data structure, called Cache-Oblivious General Balanced Tree (COG-tree). Using our scheme, searching a key requires O(log_B n) block transfers and O(log n) comparisons in the external-memory and in the cache-oblivious model. These complexities are theoretically efficient. Interestingly, the core partition for weight-balanced trees and COG-tree can be maintained with amortized O(log_B n) block transfers per update, whereas maintaining the core partition for AVL trees requires more than a poly-logarithmic amortized cost. Studying the properties of these trees also lead us to some other new properties of AVL trees and trees with bounded degree, namely, we present and study gaps in AVL trees and we prove Tarjan et al.'s conjecture on the number of rotations in a sequence of deletions and insertions

    Acta Cybernetica : Volume 13. Number 1.

    Get PDF

    Advances and Novel Approaches in Discrete Optimization

    Get PDF
    Discrete optimization is an important area of Applied Mathematics with a broad spectrum of applications in many fields. This book results from a Special Issue in the journal Mathematics entitled ‘Advances and Novel Approaches in Discrete Optimization’. It contains 17 articles covering a broad spectrum of subjects which have been selected from 43 submitted papers after a thorough refereeing process. Among other topics, it includes seven articles dealing with scheduling problems, e.g., online scheduling, batching, dual and inverse scheduling problems, or uncertain scheduling problems. Other subjects are graphs and applications, evacuation planning, the max-cut problem, capacitated lot-sizing, and packing algorithms

    On coding labeled trees

    Get PDF
    Trees are probably the most studied class of graphs in Computer Science. In this thesis we study bijective codes that represent labeled trees by means of string of node labels. We contribute to the understanding of their algorithmic tractability, their properties, and their applications. The thesis is divided into two parts. In the first part we focus on two types of tree codes, namely Prufer-like codes and Transformation codes. We study optimal encoding and decoding algorithms, both in a sequential and in a parallel setting. We propose a unified approach that works for all Prufer-like codes and a more generic scheme based on the transformation of a tree into a functional digraph suitable for all bijective codes. Our results in this area close a variety of open problems. We also consider possible applications of tree encodings, discussing how to exploit these codes in Genetic Algorithms and in the generation of random trees. Moreover, we introduce a modified version of a known code that, in Genetic Algorithms, outperform all the other known codes. In the second part of the thesis we focus on two possible generalizations of our work. We first take into account the classes of k-trees and k-arch graphs (both superclasses of trees): we study bijective codes for this classes of graphs and their algorithmic feasibility. Then, we shift our attention to Informative Labeling Schemes. In this context labels are no longer considered as simple unique node identifiers, they rather convey information useful to achieve efficient computations on the tree. We exploit this idea to design a concurrent data structure for the lowest common ancestor problem on dynamic trees. We also present an experimental comparison between our labeling scheme and the one proposed by Peleg for static trees

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum

    Notes on Randomized Algorithms

    Full text link
    Lecture notes for the Yale Computer Science course CPSC 469/569 Randomized Algorithms. Suitable for use as a supplementary text for an introductory graduate or advanced undergraduate course on randomized algorithms. Discusses tools from probability theory, including random variables and expectations, union bound arguments, concentration bounds, applications of martingales and Markov chains, and the Lov\'asz Local Lemma. Algorithmic topics include analysis of classic randomized algorithms such as Quicksort and Hoare's FIND, randomized tree data structures, hashing, Markov chain Monte Carlo sampling, randomized approximate counting, derandomization, quantum computing, and some examples of randomized distributed algorithms
    corecore