181,331 research outputs found

    Neurohormonal modulation of the Limulus heart: amine actions on neuromuscular transmission and cardiac muscle

    Get PDF
    The responses of Limulus cardiac neuromuscular junctions and cardiac muscle cells to four endogenous amines were determined in order to identify the cellular targets underlying amine modulation of heartbeat amplitude. The amines increased the amplitude of the Limulus heartbeat, with dopamine (DA) being more potent than octopamine, epinephrine or norepinephrine. The effect of DA on heartbeat amplitude was not blocked by phentolamine. DA enhanced the contractility of deganglionated heart muscle, with time course and dose-dependence similar to its effect on the intact heart. The amines also enhanced neuromuscular transmission, with time course and dose-dependence similar to their effects upon the intact heart. The amplitude of unitary excitatory junction potentials (EJPs) and frequency of miniature excitatory junction potentials (mEJPs) were increased by DA, while mEJP amplitude was unchanged. Thus DA, and probably the other amines, had a presynaptic effect. Combined actions upon cardiac muscle and cardiac neuromuscular transmission account for the ability of these amines to increase the amplitude of the Limulus heartbeat

    Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands

    Get PDF
    Monomethylamine (MA), dimethylamine (DMA) and diethylamine (DEA) were detected at non-negligible concentrations in sub-micrometer particles at the Cap Verde Atmospheric Observatory (CVAO) located on the island of São Vicente in Cape Verde during algal blooms in 2007. The concentrations of these amines in five stage impactor samples ranged from 0–30 pg m−3 for MA, 130–360 pg m−3 for DMA and 5–110 pg m−3 for DEA during the spring bloom in May 2007 and 2–520 pg m−3 for MA, 100–1400 pg m−3 for DMA and 90–760 pg m−3 for DEA during an unexpected winter algal bloom in December 2007. Anomalously high Saharan dust deposition and intensive ocean layer deepening were found at the Atmospheric Observatory and the associated Ocean Observatory during algal bloom periods. The highest amine concentrations in fine particles (impactor stage 2, 0.14–0.42 μm) indicate that amines are likely taken up from the gas phase into the acidic sub-micrometer particles. The contribution of amines to the organic carbon (OC) content ranged from 0.2–2.5% C in the winter months, indicating the importance of this class of compounds to the carbon cycle in the marine environment. Furthermore, aliphatic amines originating from marine biological sources likely contribute significantly to the nitrogen content in the marine atmosphere. The average contribution of the amines to the detected nitrogen species in sub-micrometer particles can be non-negligible, especially in the winter months (0.1% N–1.5% N in the sum of nitrate, ammonium and amines). This indicates that these smaller aliphatic amines can be important for the carbon and the nitrogen cycles in the remote marine environment

    Second messenger systems underlying amine and peptide actions on cardiac muscle in the horseshoe crab, Limulus polyphemus

    Get PDF
    The biochemical mechanisms by which octopamine, catecholamines and the peptide proctolin exert their actions on Limulus cardiac muscle were investigated. Amines produced long-lasting increases in the amplitude of contractions evoked by electrical stimulation. At 10(−5) mol l-1, the apparent order of potency for amine-induced increases in evoked contraction amplitude was dopamine approximately equal to octopamine greater than norepinephrine approximately equal to epinephrine. At this dose, amines produced long-lasting increases in the levels of cyclic AMP (octopamine greater than dopamine approximately equal to norepinephrine approximately equal to epinephrine), but not of cyclic GMP, in Limulus cardiac muscle. Like the amines, the adenylate cyclase activator forskolin enhanced cardiac muscle contractility and increased levels of cyclic AMP, but not of cyclic GMP. The phosphodiesterase inhibitor IBMX produced a transient increase in cardiac muscle contractility, but typically produced long-lasting negative inotropy. This agent increased levels of both cyclic AMP and cyclic GMP in Limulus cardiac muscle. Proctolin and the protein kinase C activator phorbol dB increased the contraction amplitude of the intact heart and the electrically stimulated myocardium. These compounds, as well as dopamine, elicited sustained contractures and rhythmic contractions when applied to deganglionated Limulus cardiac muscle rings. Unlike the amines, proctolin and phorbol dB did not increase cardiac muscle cyclic AMP levels. These results suggest that several second-messenger systems may be utilized by amines and peptides to produce excitatory actions on cardiac muscle fibers of the Limulus heart. Cyclic AMP appears to be an important second messenger underlying the effects of amines to enhance cardiac muscle contractility. Pharmacological data suggest that proctolin may alter cardiac muscle contractility and excitability by a mechanism which involves the phosphatidylinositol pathway. Dopamine, unlike the other amines, produces a number of proctolin-like effects and may activate both the cyclic AMP and the phosphatidylinositol systems in Limulus cardiac muscle

    Effect of Steaming and Boiling on the Antioxidant Properties and Biogenic Amines Content in Green Bean (Phaseolus vulgaris) Varieties of Different Colours

    Get PDF
    Effects of boiling and steaming cooking methods were studied on total polyphenols, antioxidant capacity, and biogenic amines of three green bean varieties, purple, yellow, and green.The vegetables gave good values both for antioxidant capacity and for phenolics content, with the purple variety being the richest in healthful components. Both the heat treatments affected the antioxidant properties of these vegetables, with boiling that reduced the initial antioxidant capacity till 30%in the yellowvariety, having the same trend for total polyphenols, with the major decrement of 43% in the green variety. On the contrary, biogenic amines significantly increased only after boiling in green and yellow variety, while purple variety did not show any changes in biogenic amines after cooking. The steaming method showed being better cooking approach in order to preserve the antioxidant properties of green beans varieties and to maintain the biogenic amines content at the lowest level

    Automated analysis of oxidative metabolites

    Get PDF
    An automated system for the study of drug metabolism is described. The system monitors the oxidative metabolites of aromatic amines and of compounds which produce formaldehyde on oxidative dealkylation. It includes color developing compositions suitable for detecting hyroxylated aromatic amines and formaldehyde

    Secondary aerosol formation from atmospheric reactions of aliphatic amines

    Get PDF
    Although aliphatic amines have been detected in both urban and rural atmospheric aerosols, little is known about the chemistry leading to particle formation or the potential aerosol yields from reactions of gas-phase amines. We present here the first systematic study of aerosol formation from the atmospheric reactions of amines. Based on laboratory chamber experiments and theoretical calculations, we evaluate aerosol formation from reaction of OH, ozone, and nitric acid with trimethylamine, methylamine, triethylamine, diethylamine, ethylamine, and ethanolamine. Entropies of formation for alkylammonium nitrate salts are estimated by molecular dynamics calculations enabling us to estimate equilibrium constants for the reactions of amines with nitric acid. Though subject to significant uncertainty, the calculated dissociation equilibrium constant for diethylammonium nitrate is found to be sufficiently small to allow for its atmospheric formation, even in the presence of ammonia which competes for available nitric acid. Experimental chamber studies indicate that the dissociation equilibrium constant for triethylammonium nitrate is of the same order of magnitude as that for ammonium nitrate. All amines studied form aerosol when photooxidized in the presence of NOx with the majority of the aerosol mass present at the peak of aerosol growth consisting of aminium (R3NH+) nitrate salts, which repartition back to the gas phase as the parent amine is consumed. Only the two tertiary amines studied, trimethylamine and triethylamine, are found to form significant non-salt organic aerosol when oxidized by OH or ozone; calculated organic mass yields for the experiments conducted are similar for ozonolysis (15% and 5% respectively) and photooxidation (23% and 8% respectively). The non-salt organic aerosol formed appears to be more stable than the nitrate salts and does not quickly repartition back to the gas phase

    A straightforward synthesis of indazolo[3,2-a]isoquinolin-6-amines

    Get PDF
    4-Substituted 1-bromoisoquinolin-3-amines were subjected to Suzuki coupling with o-nitrophenylboronic acid to yield 1-(2-nitrophenyl) isoquinolinamines, which participated in Cadogan cyclization with triethyl phosphite under microwave irradiation in a sealed vial to yield fluorescent indazolo[3,2-a] isoquinolin-6-amines. The new compounds were also functionalized by transformation of the amino group. © 2013 Elsevier Ltd. All rights reserved

    Inhibitor specificity of amine oxidase

    Get PDF
    Although at the present time it appears clear that amine oxidase oxidation of adrenalin, or other o-diphenolic pressor amines such as were studied by Richter (6), does not play a significant physiological role, it is equally clear that the inactivation of aliphatic amines, phenethylamine and probably 4-hydroxyphenethylamine (tyramine), does predominantly take place by amine oxidase oxidation. In view of the evidence from the experiments of Ewins and Laidlaw (8) and a later study by Guggenheim and Löffler (9), such amine oxidations chiefly occur in the liver. In the present studies, an attempt was made to value quantitatively the inhibition of some of these particular type compounds by certain types of amines which are not themselves oxidized by the enzyme system (see Alles and Heegaard (10))

    Synthesis of Quinazoline and Quinazolinone Derivatives via Ligand-Promoted Ruthenium-Catalyzed Dehydrogenative and Deaminative Coupling Reaction of 2-Aminophenyl Ketones and 2-Aminobenzamides with Amines

    Get PDF
    The in situ formed ruthenium catalytic system ([Ru]/L) was found to be highly selective for the dehydrogenative coupling reaction of 2-aminophenyl ketones with amines to form quinazoline products. The deaminative coupling reaction of 2-aminobenzamides with amines led to the efficient formation of quinazolinone products. The catalytic coupling method provides an efficient synthesis of quinazoline and quinazolinone derivatives without using any reactive reagents or forming any toxic byproducts
    • …
    corecore