239,771 research outputs found

    A two-step approach to achieve secondary amide transamidation enabled by nickel catalysis.

    Get PDF
    A long-standing challenge in synthetic chemistry is the development of the transamidation reaction. This process, which involves the conversion of one amide to another, is typically plagued by unfavourable kinetic and thermodynamic factors. Although some advances have been made with regard to the transamidation of primary amide substrates, secondary amide transamidation has remained elusive. Here we present a simple two-step approach that allows for the elusive overall transformation to take place using non-precious metal catalysis. The methodology proceeds under exceptionally mild reaction conditions and is tolerant of amino-acid-derived nucleophiles. In addition to overcoming the classic problem of secondary amide transamidation, our studies expand the growing repertoire of new transformations mediated by base metal catalysis

    Nickel-catalyzed transamidation of aliphatic amide derivatives.

    Get PDF
    Transamidation, or the conversion of one amide to another, is a long-standing challenge in organic synthesis. Although notable progress has been made in the transamidation of primary amides, the transamidation of secondary amides has remained underdeveloped, especially when considering aliphatic substrates. Herein, we report a two-step approach to achieve the transamidation of secondary aliphatic amides, which relies on non-precious metal catalysis. The method involves initial Boc-functionalization of secondary amide substrates to weaken the amide C-N bond. Subsequent treatment with a nickel catalyst, in the presence of an appropriate amine coupling partner, then delivers the net transamidated products. The transformation proceeds in synthetically useful yields across a range of substrates. A series of competition experiments delineate selectivity patterns that should influence future synthetic design. Moreover, the transamidation of Boc-activated secondary amide derivatives bearing epimerizable stereocenters underscores the mildness and synthetic utility of this methodology. This study provides the most general solution to the classic problem of secondary amide transamidation reported to date

    Intermolecular interactions in N-(ferrocenylmethyl)anthracene-9-carboxamide

    Get PDF
    The title compound, [Fe(C₅H₅)(C₂₁H₁₆NO)], was synthesized from the coupling reaction of anthracene-9-carboxylic acid and ferrocenylmethylamine. The ferrocenyl (Fc) group and the anthracene ring system both lie approximately orthogonal to the amide moiety. An amide-amide interaction (along the a axis) is the principal interaction [N...O = 2.910 (2) Å]. A C-H...π(arene) interaction [C...centroid = 3.573 (2) Å] and a C-H...O interaction [C...O = 3.275 (3) Å] complete the hydrogen bonding; two short (Fc)C...C(anthracene) contacts are also present

    The effect of the amido substituent on polymer molecular weight in propene homopolymerisation by titanium cyclopentadienyl-amide catalysts

    Get PDF
    In the homopolymerisation of propene by the cyclopentadienyl-amide titanium catalyst systems [η5,η1-C5H4(CH2)2NR]TiCl2/MAO and [η5,η1-C5H4(CH2)2NR]Ti(CH2Ph)2/B(C6F5)3 (R = tBu, iPr, Me), the catalyst with the smallest substituent (Me) on the amido moiety consistently gives the highest polymer molecular weight. This differs from the trend usually observed in related catalysts with tetramethylcyclopentadienyl-amide ancillary ligands, where larger amide substituents result in higher molecular weights. Based on the present information a hypothesis is formulated in which an increased cation-anion interaction for the less sterically hindered catalyst is responsible for disfavouring chain transfer relative to chain growth.

    Gold amides as anticancer drugs: synthesis and activity studies

    Get PDF
    Modular gold amide chemotherapeutics: Access to modern chemotherapeutics with robust and flexible synthetic routes that are amenable to extensive customisation is a key requirement in drug synthesis and discovery. A class of chiral gold amide complexes featuring amino acid derived ligands is reported herein. They all exhibit in vitro cytotoxicity against two slow growing breast cancer cell lines with limited toxicity towards normal epithelial cells

    Lower-rim ferrocenyl substituted calixarenes: new electrochemical sensors for anions

    No full text
    New ferrocene substituted calix[4 and 5]arenes have been prepared and the crystal structure of a lower-rim substituted bis ferrocene calix[4]arene (7) has been elucidated. The respective ferrocene/ferrocenium redox-couples of compounds 6 (a calix[4]arene tetra ferrocene amide) and 8 (a calix[5]arene pentaferrocene amide) are shown to be significantly cathodically perturbed in the presence of anions by up to 160 mV in the presence of dihydrogen phosphate

    Estimating the level of carbamoylated plasma non-high-density lipoproteins using infrared spectroscopy

    Get PDF
    Background: The increased cardiovascular morbidity and mortality observed in chronic kidney disease (CKD) patients can be partly explained by the presence of carbamoylated lipoproteins. Lipid profiles can be determined with infrared spectroscopy. In this paper, the effects of carbamoylation on spectral changes of non-high-density lipoproteins (non-HDL) were studied. Methods: In the present study, fasting serum samples were obtained from 84 CKD patients (CKD stage 3-5: n = 37 and CKD stage 5d (hemodialysis): n = 47) and from 45 healthy subjects. In vitro carbamoylation of serum lipoproteins from healthy subjects was performed using increasing concentrations of potassium cyanate. Lipoprotein-containing pellets were isolated by precipitation of non-HDL. The amount of carbamoylated serum non-HDL was estimated using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, followed by soft independent modelling by class analogy analysis. Results: Carbamoylation resulted in a small increase of the amide I band (1714-1589 cm(-1)) of the infrared spectroscopy (IR) spectrum. A significant difference in the amide II/amide I area under the curves (AUC) ratio was observed between healthy subjects and CKD patients, as well as between the two CKD groups (non-dialysis versus hemodialysis patients). Conclusions: ATR-FTIR spectroscopy can be considered as a novel method to detect non-HDL carbamoylation

    Complexation of Secondary Amides to Chromium(III): the X-Ray Structure of a Molecule with Two Modes of Monodentate Organic Amide Co-ordination

    Get PDF
    The X-ray crystal structure of the dimer [Cr{H(chba-Et)}(py)_2]_(2)·2py [H_(4)(chba-Et)= 1,2-bis(3,5-dichloro-2-hydroxybenzamido) ethane, py = pyridine] establishes, for the first time, the existence of N-co-ordination of an organic amide to Cr^III, the N-atom and carbonyl O-atom of two separate amide groups being co-ordinated to each Cr^III centre [Cr–N 2.030(6) and Cr–O 1.976(5)Å]; the potentially tetra-anionic chelating ligand leads to a variety of co-ordination modes
    corecore