290 research outputs found

    Deep Component Analysis via Alternating Direction Neural Networks

    Full text link
    Despite a lack of theoretical understanding, deep neural networks have achieved unparalleled performance in a wide range of applications. On the other hand, shallow representation learning with component analysis is associated with rich intuition and theory, but smaller capacity often limits its usefulness. To bridge this gap, we introduce Deep Component Analysis (DeepCA), an expressive multilayer model formulation that enforces hierarchical structure through constraints on latent variables in each layer. For inference, we propose a differentiable optimization algorithm implemented using recurrent Alternating Direction Neural Networks (ADNNs) that enable parameter learning using standard backpropagation. By interpreting feed-forward networks as single-iteration approximations of inference in our model, we provide both a novel theoretical perspective for understanding them and a practical technique for constraining predictions with prior knowledge. Experimentally, we demonstrate performance improvements on a variety of tasks, including single-image depth prediction with sparse output constraints

    Multi-dimensional imaging data recovery via minimizing the partial sum of tubal nuclear norm

    Full text link
    In this paper, we investigate tensor recovery problems within the tensor singular value decomposition (t-SVD) framework. We propose the partial sum of the tubal nuclear norm (PSTNN) of a tensor. The PSTNN is a surrogate of the tensor tubal multi-rank. We build two PSTNN-based minimization models for two typical tensor recovery problems, i.e., the tensor completion and the tensor principal component analysis. We give two algorithms based on the alternating direction method of multipliers (ADMM) to solve proposed PSTNN-based tensor recovery models. Experimental results on the synthetic data and real-world data reveal the superior of the proposed PSTNN

    MoDL: Model Based Deep Learning Architecture for Inverse Problems

    Full text link
    We introduce a model-based image reconstruction framework with a convolution neural network (CNN) based regularization prior. The proposed formulation provides a systematic approach for deriving deep architectures for inverse problems with the arbitrary structure. Since the forward model is explicitly accounted for, a smaller network with fewer parameters is sufficient to capture the image information compared to black-box deep learning approaches, thus reducing the demand for training data and training time. Since we rely on end-to-end training, the CNN weights are customized to the forward model, thus offering improved performance over approaches that rely on pre-trained denoisers. The main difference of the framework from existing end-to-end training strategies is the sharing of the network weights across iterations and channels. Our experiments show that the decoupling of the number of iterations from the network complexity offered by this approach provides benefits including lower demand for training data, reduced risk of overfitting, and implementations with significantly reduced memory footprint. We propose to enforce data-consistency by using numerical optimization blocks such as conjugate gradients algorithm within the network; this approach offers faster convergence per iteration, compared to methods that rely on proximal gradients steps to enforce data consistency. Our experiments show that the faster convergence translates to improved performance, especially when the available GPU memory restricts the number of iterations.Comment: published in IEEE Transaction on Medical Imagin

    Tensor-based formulation and nuclear norm regularization for multi-energy computed tomography

    Full text link
    The development of energy selective, photon counting X-ray detectors allows for a wide range of new possibilities in the area of computed tomographic image formation. Under the assumption of perfect energy resolution, here we propose a tensor-based iterative algorithm that simultaneously reconstructs the X-ray attenuation distribution for each energy. We use a multi-linear image model rather than a more standard "stacked vector" representation in order to develop novel tensor-based regularizers. Specifically, we model the multi-spectral unknown as a 3-way tensor where the first two dimensions are space and the third dimension is energy. This approach allows for the design of tensor nuclear norm regularizers, which like its two dimensional counterpart, is a convex function of the multi-spectral unknown. The solution to the resulting convex optimization problem is obtained using an alternating direction method of multipliers (ADMM) approach. Simulation results shows that the generalized tensor nuclear norm can be used as a stand alone regularization technique for the energy selective (spectral) computed tomography (CT) problem and when combined with total variation regularization it enhances the regularization capabilities especially at low energy images where the effects of noise are most prominent

    Decentralized learning for wireless communications and networking

    Full text link
    This chapter deals with decentralized learning algorithms for in-network processing of graph-valued data. A generic learning problem is formulated and recast into a separable form, which is iteratively minimized using the alternating-direction method of multipliers (ADMM) so as to gain the desired degree of parallelization. Without exchanging elements from the distributed training sets and keeping inter-node communications at affordable levels, the local (per-node) learners consent to the desired quantity inferred globally, meaning the one obtained if the entire training data set were centrally available. Impact of the decentralized learning framework to contemporary wireless communications and networking tasks is illustrated through case studies including target tracking using wireless sensor networks, unveiling Internet traffic anomalies, power system state estimation, as well as spectrum cartography for wireless cognitive radio networks.Comment: Contributed chapter to appear in Splitting Methods in Communication and Imaging, Science and Engineering, R. Glowinski, S. Osher, and W. Yin, Editors, New York, Springer, 201

    Sparse Optimization Problem with s-difference Regularization

    Full text link
    In this paper, a s-difference type regularization for sparse recovery problem is proposed, which is the difference of the normal penalty function R(x) and its corresponding struncated function R (xs). First, we show the equivalent conditions between the L0 constrained problem and the unconstrained s-difference penalty regularized problem. Next, we choose the forward-backward splitting (FBS) method to solve the nonconvex regularizes function and further derive some closed-form solutions for the proximal mapping of the s-difference regularization with some commonly used R(x), which makes the FBS easy and fast. We also show that any cluster point of the sequence generated by the proposed algorithm converges to a stationary point. Numerical experiments demonstrate the efficiency of the proposed s-difference regularization in comparison with some other existing penalty functions.Comment: 20 pages, 5 figure

    On the Convergence of ADMM with Task Adaption and Beyond

    Full text link
    Along with the development of learning and vision, Alternating Direction Method of Multiplier (ADMM) has become a popular algorithm for separable optimization model with linear constraint. However, the ADMM and its numerical variants (e.g., inexact, proximal or linearized) are awkward to obtain state-of-the-art performance when dealing with complex learning and vision tasks due to their weak task-adaption ability. Recently, there has been an increasing interest in incorporating task-specific computational modules (e.g., designed filters or learned architectures) into ADMM iterations. Unfortunately, these task-related modules introduce uncontrolled and unstable iterative flows, they also break the structures of the original optimization model. Therefore, existing theoretical investigations are invalid for these resulted task-specific iterations. In this paper, we develop a simple and generic proximal ADMM framework to incorporate flexible task-specific module for learning and vision problems. We rigorously prove the convergence both in objective function values and the constraint violation and provide the worst-case convergence rate measured by the iteration complexity. Our investigations not only develop new perspectives for analyzing task-adaptive ADMM but also supply meaningful guidelines on designing practical optimization methods for real-world applications. Numerical experiments are conducted to verify the theoretical results and demonstrate the efficiency of our algorithmic framework

    Convolutional Recurrent Neural Networks for Dynamic MR Image Reconstruction

    Full text link
    Accelerating the data acquisition of dynamic magnetic resonance imaging (MRI) leads to a challenging ill-posed inverse problem, which has received great interest from both the signal processing and machine learning community over the last decades. The key ingredient to the problem is how to exploit the temporal correlation of the MR sequence to resolve the aliasing artefact. Traditionally, such observation led to a formulation of a non-convex optimisation problem, which were solved using iterative algorithms. Recently, however, deep learning based-approaches have gained significant popularity due to its ability to solve general inversion problems. In this work, we propose a unique, novel convolutional recurrent neural network (CRNN) architecture which reconstructs high quality cardiac MR images from highly undersampled k-space data by jointly exploiting the dependencies of the temporal sequences as well as the iterative nature of the traditional optimisation algorithms. In particular, the proposed architecture embeds the structure of the traditional iterative algorithms, efficiently modelling the recurrence of the iterative reconstruction stages by using recurrent hidden connections over such iterations. In addition, spatiotemporal dependencies are simultaneously learnt by exploiting bidirectional recurrent hidden connections across time sequences. The proposed algorithm is able to learn both the temporal dependency and the iterative reconstruction process effectively with only a very small number of parameters, while outperforming current MR reconstruction methods in terms of computational complexity, reconstruction accuracy and speed.Comment: Published in IEEE Transactions on Medical Imagin

    Harnessing Sparsity over the Continuum: Atomic Norm Minimization for Super Resolution

    Full text link
    Convex optimization recently emerges as a compelling framework for performing super resolution, garnering significant attention from multiple communities spanning signal processing, applied mathematics, and optimization. This article offers a friendly exposition to atomic norm minimization as a canonical convex approach to solve super resolution problems. The mathematical foundations and performances guarantees of this approach are presented, and its application in super resolution image reconstruction for single-molecule fluorescence microscopy are highlighted

    Proximal Alternating Direction Network: A Globally Converged Deep Unrolling Framework

    Full text link
    Deep learning models have gained great success in many real-world applications. However, most existing networks are typically designed in heuristic manners, thus lack of rigorous mathematical principles and derivations. Several recent studies build deep structures by unrolling a particular optimization model that involves task information. Unfortunately, due to the dynamic nature of network parameters, their resultant deep propagation networks do \emph{not} possess the nice convergence property as the original optimization scheme does. This paper provides a novel proximal unrolling framework to establish deep models by integrating experimentally verified network architectures and rich cues of the tasks. More importantly, we \emph{prove in theory} that 1) the propagation generated by our unrolled deep model globally converges to a critical-point of a given variational energy, and 2) the proposed framework is still able to learn priors from training data to generate a convergent propagation even when task information is only partially available. Indeed, these theoretical results are the best we can ask for, unless stronger assumptions are enforced. Extensive experiments on various real-world applications verify the theoretical convergence and demonstrate the effectiveness of designed deep models
    • …
    corecore