2,439 research outputs found

    Joint Maximum Purity Forest with Application to Image Super-Resolution

    Full text link
    In this paper, we propose a novel random-forest scheme, namely Joint Maximum Purity Forest (JMPF), for classification, clustering, and regression tasks. In the JMPF scheme, the original feature space is transformed into a compactly pre-clustered feature space, via a trained rotation matrix. The rotation matrix is obtained through an iterative quantization process, where the input data belonging to different classes are clustered to the respective vertices of the new feature space with maximum purity. In the new feature space, orthogonal hyperplanes, which are employed at the split-nodes of decision trees in random forests, can tackle the clustering problems effectively. We evaluated our proposed method on public benchmark datasets for regression and classification tasks, and experiments showed that JMPF remarkably outperforms other state-of-the-art random-forest-based approaches. Furthermore, we applied JMPF to image super-resolution, because the transformed, compact features are more discriminative to the clustering-regression scheme. Experiment results on several public benchmark datasets also showed that the JMPF-based image super-resolution scheme is consistently superior to recent state-of-the-art image super-resolution algorithms.Comment: 18 pages, 7 figure

    Multi-modal Face Pose Estimation with Multi-task Manifold Deep Learning

    Full text link
    Human face pose estimation aims at estimating the gazing direction or head postures with 2D images. It gives some very important information such as communicative gestures, saliency detection and so on, which attracts plenty of attention recently. However, it is challenging because of complex background, various orientations and face appearance visibility. Therefore, a descriptive representation of face images and mapping it to poses are critical. In this paper, we make use of multi-modal data and propose a novel face pose estimation method that uses a novel deep learning framework named Multi-task Manifold Deep Learning M2DLM^2DL. It is based on feature extraction with improved deep neural networks and multi-modal mapping relationship with multi-task learning. In the proposed deep learning based framework, Manifold Regularized Convolutional Layers (MRCL) improve traditional convolutional layers by learning the relationship among outputs of neurons. Besides, in the proposed mapping relationship learning method, different modals of face representations are naturally combined to learn the mapping function from face images to poses. In this way, the computed mapping model with multiple tasks is improved. Experimental results on three challenging benchmark datasets DPOSE, HPID and BKHPD demonstrate the outstanding performance of M2DLM^2DL

    Factorization of View-Object Manifolds for Joint Object Recognition and Pose Estimation

    Full text link
    Due to large variations in shape, appearance, and viewing conditions, object recognition is a key precursory challenge in the fields of object manipulation and robotic/AI visual reasoning in general. Recognizing object categories, particular instances of objects and viewpoints/poses of objects are three critical subproblems robots must solve in order to accurately grasp/manipulate objects and reason about their environments. Multi-view images of the same object lie on intrinsic low-dimensional manifolds in descriptor spaces (e.g. visual/depth descriptor spaces). These object manifolds share the same topology despite being geometrically different. Each object manifold can be represented as a deformed version of a unified manifold. The object manifolds can thus be parameterized by its homeomorphic mapping/reconstruction from the unified manifold. In this work, we develop a novel framework to jointly solve the three challenging recognition sub-problems, by explicitly modeling the deformations of object manifolds and factorizing it in a view-invariant space for recognition. We perform extensive experiments on several challenging datasets and achieve state-of-the-art results

    Globally Tuned Cascade Pose Regression via Back Propagation with Application in 2D Face Pose Estimation and Heart Segmentation in 3D CT Images

    Full text link
    Recently, a successful pose estimation algorithm, called Cascade Pose Regression (CPR), was proposed in the literature. Trained over Pose Index Feature, CPR is a regressor ensemble that is similar to Boosting. In this paper we show how CPR can be represented as a Neural Network. Specifically, we adopt a Graph Transformer Network (GTN) representation and accordingly train CPR with Back Propagation (BP) that permits globally tuning. In contrast, previous CPR literature only took a layer wise training without any post fine tuning. We empirically show that global training with BP outperforms layer-wise (pre-)training. Our CPR-GTN adopts a Multi Layer Percetron as the regressor, which utilized sparse connection to learn local image feature representation. We tested the proposed CPR-GTN on 2D face pose estimation problem as in previous CPR literature. Besides, we also investigated the possibility of extending CPR-GTN to 3D pose estimation by doing experiments using 3D Computed Tomography dataset for heart segmentation

    Learning and Refining of Privileged Information-based RNNs for Action Recognition from Depth Sequences

    Full text link
    Existing RNN-based approaches for action recognition from depth sequences require either skeleton joints or hand-crafted depth features as inputs. An end-to-end manner, mapping from raw depth maps to action classes, is non-trivial to design due to the fact that: 1) single channel map lacks texture thus weakens the discriminative power; 2) relatively small set of depth training data. To address these challenges, we propose to learn an RNN driven by privileged information (PI) in three-steps: An encoder is pre-trained to learn a joint embedding of depth appearance and PI (i.e. skeleton joints). The learned embedding layers are then tuned in the learning step, aiming to optimize the network by exploiting PI in a form of multi-task loss. However, exploiting PI as a secondary task provides little help to improve the performance of a primary task (i.e. classification) due to the gap between them. Finally, a bridging matrix is defined to connect two tasks by discovering latent PI in the refining step. Our PI-based classification loss maintains a consistency between latent PI and predicted distribution. The latent PI and network are iteratively estimated and updated in an expectation-maximization procedure. The proposed learning process provides greater discriminative power to model subtle depth difference, while helping avoid overfitting the scarcer training data. Our experiments show significant performance gains over state-of-the-art methods on three public benchmark datasets and our newly collected Blanket dataset.Comment: conference cvpr 201

    ASIST: Automatic Semantically Invariant Scene Transformation

    Full text link
    We present ASIST, a technique for transforming point clouds by replacing objects with their semantically equivalent counterparts. Transformations of this kind have applications in virtual reality, repair of fused scans, and robotics. ASIST is based on a unified formulation of semantic labeling and object replacement; both result from minimizing a single objective. We present numerical tools for the efficient solution of this optimization problem. The method is experimentally assessed on new datasets of both synthetic and real point clouds, and is additionally compared to two recent works on object replacement on data from the corresponding papers

    Robust Registration and Geometry Estimation from Unstructured Facial Scans

    Full text link
    Commercial off the shelf (COTS) 3D scanners are capable of generating point clouds covering visible portions of a face with sub-millimeter accuracy at close range, but lack the coverage and specialized anatomic registration provided by more expensive 3D facial scanners. We demonstrate an effective pipeline for joint alignment of multiple unstructured 3D point clouds and registration to a parameterized 3D model which represents shape variation of the human head. Most algorithms separate the problems of pose estimation and mesh warping, however we propose a new iterative method where these steps are interwoven. Error decreases with each iteration, showing the proposed approach is effective in improving geometry and alignment. The approach described is used to align the NDOff-2007 dataset, which contains 7,358 individual scans at various poses of 396 subjects. The dataset has a number of full profile scans which are correctly aligned and contribute directly to the associated mesh geometry. The dataset in its raw form contains a significant number of mislabeled scans, which are identified and corrected based on alignment error using the proposed algorithm. The average point to surface distance between the aligned scans and the produced geometries is one half millimeter

    Learning Local RGB-to-CAD Correspondences for Object Pose Estimation

    Full text link
    We consider the problem of 3D object pose estimation. While much recent work has focused on the RGB domain, the reliance on accurately annotated images limits their generalizability and scalability. On the other hand, the easily available CAD models of objects are rich sources of data, providing a large number of synthetically rendered images. In this paper, we solve this key problem of existing methods requiring expensive 3D pose annotations by proposing a new method that matches RGB images to CAD models for object pose estimation. Our key innovations compared to existing work include removing the need for either real-world textures for CAD models or explicit 3D pose annotations for RGB images. We achieve this through a series of objectives that learn how to select keypoints and enforce viewpoint and modality invariance across RGB images and CAD model renderings. We conduct extensive experiments to demonstrate that the proposed method can reliably estimate object pose in RGB images, as well as generalize to object instances not seen during training.Comment: 10 pages, 6 figures, 4 tables, ICCV 201

    Discovery of Latent 3D Keypoints via End-to-end Geometric Reasoning

    Full text link
    This paper presents KeypointNet, an end-to-end geometric reasoning framework to learn an optimal set of category-specific 3D keypoints, along with their detectors. Given a single image, KeypointNet extracts 3D keypoints that are optimized for a downstream task. We demonstrate this framework on 3D pose estimation by proposing a differentiable objective that seeks the optimal set of keypoints for recovering the relative pose between two views of an object. Our model discovers geometrically and semantically consistent keypoints across viewing angles and instances of an object category. Importantly, we find that our end-to-end framework using no ground-truth keypoint annotations outperforms a fully supervised baseline using the same neural network architecture on the task of pose estimation. The discovered 3D keypoints on the car, chair, and plane categories of ShapeNet are visualized at http://keypointnet.github.io/

    2D-3D Pose Consistency-based Conditional Random Fields for 3D Human Pose Estimation

    Full text link
    This study considers the 3D human pose estimation problem in a single RGB image by proposing a conditional random field (CRF) model over 2D poses, in which the 3D pose is obtained as a byproduct of the inference process. The unary term of the proposed CRF model is defined based on a powerful heat-map regression network, which has been proposed for 2D human pose estimation. This study also presents a regression network for lifting the 2D pose to 3D pose and proposes the prior term based on the consistency between the estimated 3D pose and the 2D pose. To obtain the approximate solution of the proposed CRF model, the N-best strategy is adopted. The proposed inference algorithm can be viewed as sequential processes of bottom-up generation of 2D and 3D pose proposals from the input 2D image based on deep networks and top-down verification of such proposals by checking their consistencies. To evaluate the proposed method, we use two large-scale datasets: Human3.6M and HumanEva. Experimental results show that the proposed method achieves the state-of-the-art 3D human pose estimation performance
    • …
    corecore