5 research outputs found

    Alternating Hamiltonian cycles in 22-edge-colored multigraphs

    Full text link
    A path (cycle) in a 22-edge-colored multigraph is alternating if no two consecutive edges have the same color. The problem of determining the existence of alternating Hamiltonian paths and cycles in 22-edge-colored multigraphs is an NP\mathcal{NP}-complete problem and it has been studied by several authors. In Bang-Jensen and Gutin's book "Digraphs: Theory, Algorithms and Applications", it is devoted one chapter to survey the last results on this topic. Most results on the existence of alternating Hamiltonian paths and cycles concern on complete and bipartite complete multigraphs and a few ones on multigraphs with high monochromatic degrees or regular monochromatic subgraphs. In this work, we use a different approach imposing local conditions on the multigraphs and it is worthwhile to notice that the class of multigraphs we deal with is much larger than, and includes, complete multigraphs, and we provide a full characterization of this class. Given a 22-edge-colored multigraph GG, we say that GG is 22-M\mathcal{M}-closed (resp. 22-NM\mathcal{NM}-closed)} if for every monochromatic (resp. non-monochromatic) 22-path P=(x1,x2,x3)P=(x_1, x_2, x_3), there exists an edge between x1x_1 and x3x_3. In this work we provide the following characterization: A 22-M\mathcal{M}-closed multigraph has an alternating Hamiltonian cycle if and only if it is color-connected and it has an alternating cycle factor. Furthermore, we construct an infinite family of 22-NM\mathcal{NM}-closed graphs, color-connected, with an alternating cycle factor, and with no alternating Hamiltonian cycle.Comment: 15 pages, 20 figure

    Alternating Hamiltonian cycles in 22-edge-colored multigraphs

    No full text
    A path (cycle) in a 22-edge-colored multigraph is alternating if no two consecutive edges have the same color. The problem of determining the existence of alternating Hamiltonian paths and cycles in 22-edge-colored multigraphs is an NP\mathcal{NP}-complete problem and it has been studied by several authors. In Bang-Jensen and Gutin's book "Digraphs: Theory, Algorithms and Applications", it is devoted one chapter to survey the last results on this topic. Most results on the existence of alternating Hamiltonian paths and cycles concern on complete and bipartite complete multigraphs and a few ones on multigraphs with high monochromatic degrees or regular monochromatic subgraphs. In this work, we use a different approach imposing local conditions on the multigraphs and it is worthwhile to notice that the class of multigraphs we deal with is much larger than, and includes, complete multigraphs, and we provide a full characterization of this class. Given a 22-edge-colored multigraph GG, we say that GG is 22-M\mathcal{M}-closed (resp. 22-NM\mathcal{NM}-closed)} if for every monochromatic (resp. non-monochromatic) 22-path P=(x1,x2,x3)P=(x_1, x_2, x_3), there exists an edge between x1x_1 and x3x_3. In this work we provide the following characterization: A 22-M\mathcal{M}-closed multigraph has an alternating Hamiltonian cycle if and only if it is color-connected and it has an alternating cycle factor. Furthermore, we construct an infinite family of 22-NM\mathcal{NM}-closed graphs, color-connected, with an alternating cycle factor, and with no alternating Hamiltonian cycle
    corecore