6,878 research outputs found

    What Is a Singular Term?

    Get PDF
    This paper discusses the question whether it is possible to explain the notion of a singular term without invoking the notion of an object or other ontological notions. The framework here is that of Michael Dummett's discussion in Frege: Philosophy of Language. I offer an emended version of Dummett's conditions, accepting but modifying some suggestions made by Bob Hale, and defend the emended conditions against some objections due to Crispin Wright. This paper dates from about 1989. It originally formed part of a very early draft of what became my Ph.D. dissertation. I rediscovered it and began scanning it, when I had nothing better to do, in Fall 2001, making some minor editing changes along the way. Suffice it to say that it no longer represents my current views. I hope, however, that it remains of some small interest

    Learning to solve planning problems efficiently by means of genetic programming

    Get PDF
    Declarative problem solving, such as planning, poses interesting challenges for Genetic Programming (GP). There have been recent attempts to apply GP to planning that fit two approaches: (a) using GP to search in plan space or (b) to evolve a planner. In this article, we propose to evolve only the heuristics to make a particular planner more efficient. This approach is more feasible than (b) because it does not have to build a planner from scratch but can take advantage of already existing planning systems. It is also more efficient than (a) because once the heuristics have been evolved, they can be used to solve a whole class of different planning problems in a planning domain, instead of running GP for every new planning problem. Empirical results show that our approach (EVOCK) is able to evolve heuristics in two planning domains (the blocks world and the logistics domain) that improve PRODIGY4.0 performance. Additionally, we experiment with a new genetic operator - Instance-Based Crossover - that is able to use traces of the base planner as raw genetic material to be injected into the evolving population.Publicad

    Simplification of UML/OCL schemas for efficient reasoning

    Get PDF
    Ensuring the correctness of a conceptual schema is an essential task in order to avoid the propagation of errors during software development. The kind of reasoning required to perform such task is known to be exponential for UML class diagrams alone and even harder when considering OCL constraints. Motivated by this issue, we propose an innovative method aimed at removing constraints and other UML elements of the schema to obtain a simplified one that preserve the same reasoning outcomes. In this way, we can reason about the correctness of the initial artifact by reasoning on a simplified version of it. Thus, the efficiency of the reasoning process is significantly improved. In addition, since our method is independent from the reasoning engine used, any reasoning method may benefit from it.Peer ReviewedPostprint (author's final draft

    Program transformations using temporal logic side conditions

    Get PDF
    This paper describes an approach to program optimisation based on transformations, where temporal logic is used to specify side conditions, and strategies are created which expand the repertoire of transformations and provide a suitable level of abstraction. We demonstrate the power of this approach by developing a set of optimisations using our transformation language and showing how the transformations can be converted into a form which makes it easier to apply them, while maintaining trust in the resulting optimising steps. The approach is illustrated through a transformational case study where we apply several optimisations to a small program

    Decidability of strong equivalence for subschemas of a class of linear, free, near-liberal program schemas

    Get PDF
    The article attached is a preprint version of the final published article which can be accessed at the link below. The article title has been changed. For referencing purposes please use the published details. Copyright © 2010 Elsevier B.V. All rights reserved.A program schema defines a class of programs, all of which have identical statement structure, but whose functions and predicates may differ. A schema thus defines an entire class of programs according to how its symbols are interpreted. Two schemas are strongly equivalent if they always define the same function from initial states to final states for every interpretation. A subschema of a schema is obtained from a schema by deleting some of its statements. A schema S is liberal if there exists an initial state in the Herbrand domain such that the same term is not generated more than once along any executable path through S. In this paper, we introduce near-liberal schemas, in which this non-repeating condition applies only to terms not having the form g() for a constant function symbol g. Given a schema S that is linear (no function or predicate symbol occurs more than once in S) and a variable v, we compute a set of function and predicate symbols in S which is a subset of those defined by Weiser's slicing algorithm and prove that if for every while predicate q in S and every constant assignment w:=g(); lying in the body of q, no other assignment to w also lies in the body of q, our smaller symbol set defines a correct subschema of S with respect to the final value of v after execution. We also prove that if S is also free (every path through S is executable) and near-liberal, it is decidable which of its subschemas are strongly equivalent to S. For the class of pairs of schemas in which one schema is a subschema of the other, this generalises a recent result in which S was required to be linear, free and liberal.This work was supported by a grant from the Engineering and Physical Sciences Research Council, Grant EP/E002919/1

    A Quasi-Fregean Solution to ‘The Concept Horse’ Paradox

    Get PDF
    In this paper I offer a conceptually tighter, quasi-Fregean solution to the concept horse paradox based on the idea that the unterfallen relation is asymmetrical. The solution is conceptually tighter in the sense that it retains the Fregean principle of separating sharply between concepts and objects, it retains Frege’s conclusion that the sentence ‘the concept horse is not a concept’ is true, but does not violate our intuitions on the matter. The solution is only ‘quasi’- Fregean in the sense that it rejects Frege’s claims about the ontological import of natural language and his analysis thereof
    corecore