826 research outputs found

    A stability result for the cube edge isoperimetric inequality

    Get PDF
    We prove the following stability version of the edge isoperimetric inequality for the cube: any subset of the cube with average boundary degree within KK of the minimum possible is ε\varepsilon -close to a union of LL disjoint cubes, where LL(K,ε)L \leq L(K,\varepsilon ) is independent of the dimension. This extends a stability result of Ellis, and can viewed as a dimension-free version of Friedgut's junta theorem.Comment: 12 page

    Extremal Lipschitz functions in the deviation inequalities from the mean

    Full text link
    We obtain an optimal deviation from the mean upper bound \begin{equation} D(x)\=\sup_{f\in \F}\mu\{f-\E_{\mu} f\geq x\},\qquad\ \text{for}\ x\in\R\label{abstr} \end{equation} where \F is the class of the integrable, Lipschitz functions on probability metric (product) spaces. As corollaries we get exact solutions of \eqref{abstr} for Euclidean unit sphere Sn1S^{n-1} with a geodesic distance and a normalized Haar measure, for Rn\R^n equipped with a Gaussian measure and for the multidimensional cube, rectangle, torus or Diamond graph equipped with uniform measure and Hamming distance. We also prove that in general probability metric spaces the sup\sup in \eqref{abstr} is achieved on a family of distance functions.Comment: 7 page

    Tighter Relations Between Sensitivity and Other Complexity Measures

    Full text link
    Sensitivity conjecture is a longstanding and fundamental open problem in the area of complexity measures of Boolean functions and decision tree complexity. The conjecture postulates that the maximum sensitivity of a Boolean function is polynomially related to other major complexity measures. Despite much attention to the problem and major advances in analysis of Boolean functions in the past decade, the problem remains wide open with no positive result toward the conjecture since the work of Kenyon and Kutin from 2004. In this work, we present new upper bounds for various complexity measures in terms of sensitivity improving the bounds provided by Kenyon and Kutin. Specifically, we show that deg(f)^{1-o(1)}=O(2^{s(f)}) and C(f) < 2^{s(f)-1} s(f); these in turn imply various corollaries regarding the relation between sensitivity and other complexity measures, such as block sensitivity, via known results. The gap between sensitivity and other complexity measures remains exponential but these results are the first improvement for this difficult problem that has been achieved in a decade.Comment: This is the merged form of arXiv submission 1306.4466 with another work. Appeared in ICALP 2014, 14 page
    corecore