37,385 research outputs found

    Cost-efficient vaccination protocols for network epidemiology

    Get PDF
    We investigate methods to vaccinate contact networks -- i.e. removing nodes in such a way that disease spreading is hindered as much as possible -- with respect to their cost-efficiency. Any real implementation of such protocols would come with costs related both to the vaccination itself, and gathering of information about the network. Disregarding this, we argue, would lead to erroneous evaluation of vaccination protocols. We use the susceptible-infected-recovered model -- the generic model for diseases making patients immune upon recovery -- as our disease-spreading scenario, and analyze outbreaks on both empirical and model networks. For different relative costs, different protocols dominate. For high vaccination costs and low costs of gathering information, the so-called acquaintance vaccination is the most cost efficient. For other parameter values, protocols designed for query-efficient identification of the network's largest degrees are most efficient

    Pulsating-campaigns of human prophylaxis driven by risk perception palliate oscillations of direct contact transmitted diseases

    Get PDF
    Human behavioral responses play an important role in the impact of disease outbreaks and yet they are often overlooked in epidemiological models. Understanding to what extent behavioral changes determine the outcome of spreading epidemics is essential to design effective intervention policies. Here we explore, analytically, the interplay between the personal decision to protect oneself from infection and the spreading of an epidemic. We do so by coupling a decision game based on the perceived risk of infection with a Susceptible-Infected-Susceptible model. Interestingly, we find that the simple decision on whether to protect oneself is enough to modify the course of the epidemics, by generating sustained steady oscillations in the prevalence. We deem these oscillations detrimental, and propose two intervention policies aimed at modifying behavioral patterns to help alleviate them. Surprisingly, we find that pulsating campaigns, compared to continuous ones, are more effective in diminishing such oscillations.Comment: 19 pages, 6 figure

    Almost exact recovery in noisy semi-supervised learning

    Full text link
    This paper investigates noisy graph-based semi-supervised learning or community detection. We consider the Stochastic Block Model (SBM), where, in addition to the graph observation, an oracle gives a non-perfect information about some nodes' cluster assignment. We derive the Maximum A Priori (MAP) estimator, and show that a continuous relaxation of the MAP performs almost exact recovery under non-restrictive conditions on the average degree and amount of oracle noise. In particular, this method avoids some pitfalls of several graph-based semi-supervised learning methods such as the flatness of the classification functions, appearing in the problems with a very large amount of unlabeled data

    Antisymmetrized molecular dynamics of wave packets with stochastic incorporation of Vlasov equation

    Get PDF
    On the basis of the antisymmetrized molecular dynamics (AMD) of wave packets for the quantum system, a novel model (called AMD-V) is constructed by the stochastic incorporation of the diffusion and the deformation of wave packets which is calculated by Vlasov equation without any restriction on the one-body distribution. In other words, the stochastic branching process in molecular dynamics is formulated so that the instantaneous time evolution of the averaged one-body distribution is essentially equivalent to the solution of Vlasov equation. Furthermore, as usual molecular dynamics, AMD-V keeps the many-body correlation and can naturally describe the fluctuation among many channels of the reaction. It is demonstrated that the newly introduced process of AMD-V has drastic effects in heavy ion collisions of 40Ca + 40Ca at 35 MeV/nucleon, especially on the fragmentation mechanism, and AMD-V reproduces the fragmentation data very well. Discussions are given on the interrelation among the frameworks of AMD, AMD-V and other microscopic models developed for the nuclear dynamics.Comment: 26 pages, LaTeX with revtex and epsf, embedded postscript figure

    On the effect of heterogeneity in stochastic interacting-particle systems

    Get PDF
    We study stochastic particle systems made up of heterogeneous units. We introduce a general framework suitable to analytically study this kind of systems and apply it to two particular models of interest in economy and epidemiology. We show that particle heterogeneity can enhance or decrease the collective fluctuations depending on the system, and that it is possible to infer the degree and the form of the heterogeneity distribution in the system by measuring only global variables and their fluctuations

    Environment-Induced Decoherence and the Transition From Quantum to Classical

    Get PDF
    We study dynamics of quantum open systems, paying special attention to those aspects of their evolution which are relevant to the transition from quantum to classical. We begin with a discussion of the conditional dynamics of simple systems. The resulting models are straightforward but suffice to illustrate basic physical ideas behind quantum measurements and decoherence. To discuss decoherence and environment-induced superselection einselection in a more general setting, we sketch perturbative as well as exact derivations of several master equations valid for various systems. Using these equations we study einselection employing the general strategy of the predictability sieve. Assumptions that are usually made in the discussion of decoherence are critically reexamined along with the ``standard lore'' to which they lead. Restoration of quantum-classical correspondence in systems that are classically chaotic is discussed. The dynamical second law -it is shown- can be traced to the same phenomena that allow for the restoration of the correspondence principle in decohering chaotic systems (where it is otherwise lost on a very short time-scale). Quantum error correction is discussed as an example of an anti-decoherence strategy. Implications of decoherence and einselection for the interpretation of quantum theory are briefly pointed out.Comment: 80 pages, 7 figures included, Lectures given by both authors at the 72nd Les Houches Summer School on "Coherent Matter Waves", July-August 199
    corecore