2 research outputs found

    Almost exact recovery in noisy semi-supervised learning

    Full text link
    This paper investigates noisy graph-based semi-supervised learning or community detection. We consider the Stochastic Block Model (SBM), where, in addition to the graph observation, an oracle gives a non-perfect information about some nodes' cluster assignment. We derive the Maximum A Priori (MAP) estimator, and show that a continuous relaxation of the MAP performs almost exact recovery under non-restrictive conditions on the average degree and amount of oracle noise. In particular, this method avoids some pitfalls of several graph-based semi-supervised learning methods such as the flatness of the classification functions, appearing in the problems with a very large amount of unlabeled data

    Almost Exact Recovery in Label Spreading

    Get PDF
    International audienceIn semi-supervised graph clustering setting, an expert provides cluster membership of few nodes. This little amount of information allows one to achieve high accuracy clustering using efficient computational procedures. Our main goal is to provide a theoretical justification why the graph-based semi-supervised learning works very well. Specifically, for the Stochastic Block Model in the moderately sparse regime, we prove that popular semi-supervised clustering methods like Label Spreading achieve asymptotically almost exact recovery as long as the fraction of labeled nodes does not go to zero and the average degree goes to infinity
    corecore