4,046 research outputs found

    The parasitic worm-derived immunomodulator, ES-62 and its drug-like small molecule analogues exhibit therapeutic potential in a model of chronic asthma

    Get PDF
    Chronic asthma is associated with persistent lung inflammation and long-term remodelling of the airways that have proved refractory to conventional treatments such as steroids, despite their efficacy in controlling acute airway contraction and bronchial inflammation. As its recent dramatic increase in industrialised countries has not been mirrored in developing regions, it has been suggested that helminth infection may protect humans against developing asthma. Consistent with this, ES-62, an immunomodulator secreted by the parasitic worm Acanthocheilonema viteae, can prevent pathology associated with chronic asthma (cellular infiltration of the lungs, particularly neutrophils and mast cells, mucus hyper-production and airway thickening) in an experimental mouse model. Importantly, ES-62 can act even after airway remodelling has been established, arresting pathogenesis and ameliorating the inflammatory flares resulting from repeated exposure to allergen that are a debilitating feature of severe chronic asthma. Moreover, two chemical analogues of ES-62, 11a and 12b mimic its therapeutic actions in restoring levels of regulatory B cells and suppressing neutrophil and mast cell responses. These studies therefore provide a platform for developing ES-62-based drugs, with compounds 11a and 12b representing the first step in the development of a novel class of drugs to combat the hitherto intractable disorder of chronic asthma

    Epigenome Modifying Tools In Asthma

    Get PDF

    Safety, tolerability, and impact on allergic inflammation of autologous E.coli autovaccine in the treatment of house dust mite asthma - a prospective open clinical trial

    Get PDF
    Background: Asthma is increasing worldwide and results from a complex immunological interaction between genetic susceptibility and environmental factors. Autovaccination with E. coli induces a strong TH-1 immune response, thus offering an option for the treatment of allergic diseases. Methods: Prospective open trial on safety, tolerability, and impact on allergic inflammation of an autologous E.coli autovaccine in intermittent or mild persistent house dust mite asthma. Determination of exhaled nitric monoxide (eNO) before and after bronchial mite challenge initially and after nine months of autovaccination. Results: Median eNO increase after autovaccination was significantly smaller (from 27.3 to 33.8 ppb; p=0.334) compared to initial values (from 32.6 to 42.2 ppb; p=0.046) (p=0.034). In nine subjects and a total of 306 injections, we observed 101 episodes of local erythema (33.3%; median of maximal diameter 2.5 cm), 95 episodes of local swelling (31.1%; median of maximal diameter 3 cm), and 27 episodes of local pain (8.8%). Four subjects reported itching at the injection site with a total of 30 episodes (9.8%). We observed no serious adverse events. All organ functions (inclusive electrocardiogramm) and laboratory testing of the blood (clinical chemistry, hematology) and the urine (screening test, B-microglobuline) were within normal limits. Vital signs undulated within the physiological variability. Conclusion: The administration of autologous autovacine for the treatment of house dust mite asthma resulted in a reduction of the eNO increase upon bronchial mite challenge. In nine subjects and 306 injections, only a few mild local reactions and no systemic severe adverse events were observed. EudraCT Nr. 2005-005534-12 ClinicalTrials.gov ID NCT0067720

    Effects of Inhaled Brevetoxins in Allergic Airways: Toxin–Allergen Interactions and Pharmacologic Intervention

    Get PDF
    During a Florida red tide, brevetoxins produced by the dinoflagellate Karenia brevis become aerosolized and cause airway symptoms in humans, especially in those with pre-existing airway disease (e.g., asthma). To understand these toxin-induced airway effects, we used sheep with airway hypersensitivity to Ascaris suum antigen as a surrogate for asthmatic patients and studied changes in pulmonary airflow resistance (R(L)) after inhalation challenge with lysed cultures of K. brevis (crude brevetoxins). Studies were done without and with clinically available drugs to determine which might prevent/reverse these effects. Crude brevetoxins (20 breaths at 100 pg/mL; n = 5) increased R (L) 128 ± 6% (mean ± SE) over baseline. This bronchoconstriction was significantly reduced (% inhibition) after pretreatment with the glucocorticosteroid budesonide (49%), the β (2) adrenergic agent albuterol (71%), the anticholinergic agent atropine (58%), and the histamine H(1)-antagonist diphenhydramine (47%). The protection afforded by atropine and diphenhydramine suggests that both cholinergic (vagal) and H(1)-mediated pathways contribute to the bronchoconstriction. The response to cutaneous toxin injection was also histamine mediated. Thus, the airway and skin data support the hypothesis that toxin activates mast cells in vivo. Albuterol given immediately after toxin challenge rapidly reversed the bronchoconstriction. Toxin inhalation increased airway kinins, and the response to inhaled toxin was enhanced after allergen challenge. Both factors could contribute to the increased sensitivity of asthmatic patients to toxin exposure. We conclude that K. brevis aerosols are potent airway constrictors. Clinically available drugs may be used to prevent or provide therapeutic relief for affected individuals

    Allergen-induced airway inflammation and its therapeutic intervention

    Get PDF
    Allergen inhalation challenge has been useful for examining the mechanisms of allergen-induced airway inflammation and the associated physiological changes and for documenting the efficacy of drugs to treat asthma. Allergen inhalation by a sensitized subject results in acute bronchoconstriction, beginning within 15-30 min and lasting 1-3 hr, which can be followed by the development of a late asthmatic response. Individuals who develop both an early and late response after allergen have more marked increases in airway hyperresponsiveness, and greater increases in allergen-induced airway inflammation, particularly in airway eosinophils and basophils. All of the currently available and effective treatments for asthma modify some aspects of allergen-induced responses. These medications include short-acting and long-acting inhaled β2-agonists, inhaled corticosteroids, cromones, methylxanthines, leukotriene inhibitors, and anti-IgE monoclonal antibody. In addition, allergen inhalation challenge has become a useful method which can, in a very limited number of patients, provide key information on the therapeutic potential of new drugs being developed to treat asthma

    Diagnosis and management of eosinophilic asthma: a US perspective.

    Get PDF
    Eosinophilic asthma is now recognized as an important subphenotype of asthma based on the pattern of inflammatory cellular infiltrate in the airway. Eosinophilic asthma can be associated with increased asthma severity, atopy, late-onset disease, and steroid refractoriness. Induced sputum cell count is the gold standard for identifying eosinophilic inflammation in asthma although several noninvasive biomarkers, including fractional exhaled nitric oxide and periostin, are emerging as potential surrogates. As novel therapies and biologic agents become increasingly available, there is an increased need for specific phenotype-directed treatment strategies. Greater recognition and understanding of the unique immunopathology of this asthma phenotype has important implications for management of the disease and the potential to improve patient outcomes. The present review provides a summary of the clinical features, pathogenesis, diagnosis, and management of eosinophilic asthma

    Differential gene network analysis for the identification of asthma-associated therapeutic targets in allergen-specific T-helper memory responses

    Get PDF
    Fifty most significant differentially expressed genes in HDM-stimulated versus resting CD4 T cells from HDM-sensitized atopics with asthmatics. Gene expression patterns were compared between HDM-stimulated and unstimulated CD4 T cells from HDM-sensitized atopics with asthma. Here we present the 50 most significant differentially expressed genes. (XLS 34 kb

    Cytokine and Lipid Mediator Regulation of Group 2 Innate Lymphoid Cells (ILC2s) in Human Allergic Airway Disease.

    Get PDF
    The recent discovery of group 2 innate lymphoid cells (ILC2s) has caused a paradigm shift in the understanding of allergic airway disease pathogenesis. Prior to the discovery of ILC2s, Th2 cells were largely thought to be the primary source of type 2 cytokines; however, activated ILC2s have since been shown to contribute significantly, and in some cases, dominantly to type 2 cytokine production. Since the discovery of ILC2s in 2010, many mediators have been shown to regulate their effector functions. Initial studies identified the epithelial derived cytokines IL-25, IL-33, and TSLP as activators of ILC2s, and recent studies have identified many additional cytokine and lipid mediators that are involved in ILC2 regulation. ILC2s and their mediators represent novel therapeutic targets for allergic airway diseases and intensive investigation is underway to better understand ILC2 biology and upstream and downstream pathways that lead to ILC2-driven airway pathology. In this review, we will focus on the cytokine and lipid mediators that regulate ILC2s in human allergic airway disease, as well as highlight newly discovered mediators of mouse ILC2s that may eventually translate to humans
    corecore