5,961 research outputs found

    An alternative to the Allen-Cahn phase field model for interfaces in solids - numerical efficiency

    Full text link
    The derivation of the Allen-Cahn and Cahn-Hilliard equations is based on the Clausius-Duhem inequality. This is not a derivation in the strict sense of the word, since other phase field equations can be fomulated satisfying this inequality. Motivated by the form of sharp interface problems, we formulate such an alternative equation and compare the properties of the models for the evolution of phase interfaces in solids, which consist of the elasticity equations and the Allen-Cahn equation or the alternative equation. We find that numerical simulations of phase interfaces with small interface energy based on the alternative model are more effective then simulations based on the Allen-Cahn model.Comment: arXiv admin note: text overlap with arXiv:1505.0544

    Diffuse Interface models for incompressible binary fluids and the mass-conserving Allen-Cahn approximation

    Full text link
    This paper is devoted to the mathematical analysis of some Diffuse Interface systems which model the motion of a two-phase incompressible fluid mixture in presence of capillarity effects in a bounded smooth domain. First, we consider a two-fluids parabolic-hyperbolic model that accounts for unmatched densities and viscosities without diffusive dynamics at the interface. We prove the existence and uniqueness of local solutions. Next, we introduce dissipative mixing effects by means of the mass-conserving Allen-Cahn approximation. In particular, we consider the resulting nonhomogeneous Navier- Stokes-Allen-Cahn and Euler-Allen-Cahn systems with the physically relevant Flory-Huggins potential. We study the existence and uniqueness of global weak and strong solutions and their separation property. In our analysis we combine energy and entropy estimates, a novel end-point estimate of the product of two functions, and a logarithmic type Gronwall argument

    The Allen-Cahn Action functional in higher dimensions

    Full text link
    The Allen-Cahn action functional is related to the probability of rare events in the stochastically perturbed Allen-Cahn equation. Formal calculations suggest a reduced action functional in the sharp interface limit. We prove in two and three space dimensions the corresponding lower bound. One difficulty is that diffuse interfaces may collapse in the limit. We therefore consider the limit of diffuse surface area measures and introduce a generalized velocity and generalized reduced action functional in a class of evolving measures. As a corollary we obtain the Gamma convergence of the action functional in a class of regularly evolving hypersurfaces.Comment: 33 pages, 4 figures; minor changes and addition
    corecore