33,772 research outputs found

    3D Printed Soft Robotic Hand

    Get PDF
    Soft robotics is an emerging industry, largely dominated by companies which hand mold their actuators. Our team set out to design an entirely 3D printed soft robotic hand, powered by a pneumatic control system which will prove both the capabilities of soft robots and those of 3D printing. Through research, computer aided design, finite element analysis, and experimental testing, a functioning actuator was created capable of a deflection of 2.17” at a maximum pressure input of 15 psi. The single actuator was expanded into a 4 finger gripper and the design was printed and assembled. The created prototype was ultimately able to lift both a 100-gram apple and a 4-gram pill, proving its functionality in two prominent industries: pharmaceutical and food packing

    The role of electrostriction on the stability of dielectric elastomer actuators

    Full text link
    In the field of soft dielectric elastomers, the notion electrostriction indicates the dependency of the permittivity on strain. The present paper is aimed at investigating the effects of electrostriction onto the stability behaviour of homogeneous electrically activated dielectric elastomer actuators. In particular, three objectives are pursued and achieved: i) the description of the phenomenon within the general nonlinear theory of electroelasticity; ii) the application of the recently proposed theory of bifurcation for electroelastic bodies in order to determine its role on the onset of electromechanical and diffuse-mode instabilities in prestressed or prestretched dielectric layers; iii) the analysis of band-localization instability in homogeneous dielectric elastomers. Results for a typical soft acrylic elastomer show that electrostriction is responsible for an enhancement towards diffuse-mode instability, while it represents a crucial property - necessarily to be taken into account - in order to provide a solution to the problem of electromechanical band-localization, that can be interpreted as a possible reason of electric breakdown. A comparison between the buckling stresses of a mechanical compressed slab and the electrically activated counterpart concludes the paper

    Performance of soft dielectric laminated composites

    Full text link
    This paper contains a thorough investigation of the performance of electrically activated layered soft dielectric composite actuators under plane deformation. Noting that the activation can be induced controlling either the voltage or the surface charge, the overall behaviour of the system is obtained via homogenization at large strains taking either the macroscopic electric field or the macroscopic electric displacement field as independent electrical variable. The performance of a two-phase composite actuator compared to that of the homogeneous case is highlighted for few boundary-value problems and for different values of stiffness and permittivity ratios between constituents being significant for applications, where the soft matrix is reinforced by a relatively small volume fraction of a stiff and high-permittivity phase. For charge-controlled devices, it is shown that some composite layouts admit, on one hand, the occurrence of pull-in/snap-through instabilities that can be exploited to design release-actuated systems, on the other, the possibility of thickening at increasing surface charge density
    corecore