3 research outputs found

    A New Robust Multi focus image fusion Method

    Get PDF
    In today's digital era, multi focus picture fusion is a critical problem in the field of computational image processing. In the field of fusion information, multi-focus picture fusion has emerged as a significant research subject. The primary objective of multi focus image fusion is to merge graphical information from several images with various focus points into a single image with no information loss. We provide a robust image fusion method that can combine two or more degraded input photos into a single clear resulting output image with additional detailed information about the fused input images. The targeted item from each of the input photographs is combined to create a secondary image output. The action level quantities and the fusion rule are two key components of picture fusion, as is widely acknowledged. The activity level values are essentially implemented in either the "spatial domain" or the "transform domain" in most common fusion methods, such as wavelet. The brightness information computed from various source photos is compared to the laws developed to produce brightness / focus maps by using local filters to extract high-frequency characteristics. As a result, the focus map provides integrated clarity information, which is useful for a variety of Multi focus picture fusion problems. Image fusion with several modalities, for example. Completing these two jobs, on the other hand. As a consequence, we offer a strategy for achieving good fusion performance in this study paper. A Convolutional Neural Network (CNN) was trained on both high-quality and blurred picture patches to represent the mapping. The main advantage of this idea is that it can create a CNN model that can provide both the Activity level Measurement" and the Fusion rule, overcoming the limitations of previous fusion procedures. Multi focus image fusion is demonstrated using microscopic images, medical imaging, computer visualization, and Image information improvement is also a benefit of multi-focus image fusion. Greater precision is necessary in terms of target detection and identification. Face recognition" and a more compact work load, as well as enhanced system consistency, are among the new features

    Shape from focus image processing approach based 3D model construction of manufactured part

    Get PDF
    The purpose of this research is to develop a process and an algorithm to create a 3D model of the surface a part. This is accomplished using a single camera and a CNC machine as a movable stage. A gradient based focus measure operator written in MATLAB is used to process the images and to generate the surface model. The scopes of this research are image processing and surface model generation as well as verifying part accuracy. The algorithm is able to create a rough surface model of a photographed part, and with careful calibration in a limited number of scenarios has been used in checking part z dimensions

    A sign-preserving filter for signal decomposition

    Get PDF
    There are optimization problems in which an improvement in performance or a reduction in cost can be attained if the input signal of the system is split into multiple components. Splitting the signal allows customizing the design of the system’s hardware for a narrower range of frequencies, which in turn allows making a better use of its physical properties. There exist applications that have very specific signal-splitting requirements, such as ‘counter-flow avoidance’, that conventional signal processing tools cannot meet. Accordingly, a novel ‘Sign-Preserving’ filter has been developed and is presented in this article. The underlying algorithm of the filter is comprehensively explained with the aim of facilitating its reproduction, and the aspects of its operation are thoroughly discussed. The filter has two key features: (1) it separates a discrete signal a into two components – a mostly low-frequency signal b and a predominantly high-frequency signal c such that the sum of b and c replicates exactly the original signal a and, more importantly, (2) the signs of the two output signals are equal to the sign of a at all times. The article presents two case studies which demonstrate the use of the Sign-Preserving filter for the optimization of real-life applications, in which counter-flow must be avoided: the hybridization of the battery pack of an electric vehicle and the parallelization of a packed bed thermal energy store
    corecore