2 research outputs found

    All non-trivial variants of 3-LDT are equivalent

    Full text link
    The popular 3-SUM conjecture states that there is no strongly subquadratic time algorithm for checking if a given set of integers contains three distinct elements that sum up to zero. A closely related problem is to check if a given set of integers contains distinct x1,x2,x3x_1, x_2, x_3 such that x1+x2=2x3x_1+x_2=2x_3. This can be reduced to 3-SUM in almost-linear time, but surprisingly a reverse reduction establishing 3-SUM hardness was not known. We provide such a reduction, thus resolving an open question of Erickson. In fact, we consider a more general problem called 3-LDT parameterized by integer parameters α1,α2,α3\alpha_1, \alpha_2, \alpha_3 and tt. In this problem, we need to check if a given set of integers contains distinct elements x1,x2,x3x_1, x_2, x_3 such that α1x1+α2x2+α3x3=t\alpha_1 x_1+\alpha_2 x_2 +\alpha_3 x_3 = t. For some combinations of the parameters, every instance of this problem is a NO-instance or there exists a simple almost-linear time algorithm. We call such variants trivial. We prove that all non-trivial variants of 3-LDT are equivalent under subquadratic reductions. Our main technical contribution is an efficient deterministic procedure based on the famous Behrend's construction that partitions a given set of integers into few subsets that avoid a chosen linear equation
    corecore