97,802 research outputs found

    Long-term evolution of highly alkaline steel slag drainage waters

    Get PDF
    © 2015, Springer International Publishing Switzerland. The disposal of slag generated by the steel industry can have negative consequences upon the surrounding aquatic environment by the generation of high pH waters, leaching of potentially problematic trace metals, and rapid rates of calcite precipitation which smother benthic habitats. A 36-year dataset was collated from the long-term ambient monitoring of physicochemical parameters and elemental concentrations of samples from two steel slag leachate-affected watercourses in northern England. Waters were typified by elevated pH ( > 10), high alkalinity, and were rich in dissolved metals (e.g. calcium (Ca), aluminium (Al), and zinc (Zn)). Long-term trend analysis was performed upon pH, alkalinity, and Ca concentration which, in addition to Ca flux calculations, were used to highlight the longevity of pollution arising as a result of the dumping and subsequent leaching of steel slags. Declines in calcium and alkalinity have been modest over the monitoring period and not accompanied by significant declines in water pH. If the monotonic trends of decline in alkalinity and calcium continue in the largest of the receiving streams, it will be in the region of 50–80 years before calcite precipitation would be expected to be close to baseline levels, where ecological impacts would be negligible

    Evaluation of the resistance of few citrus rootstocks to alkalinity by applying a faste test of secreening

    Get PDF
    Alkalinity of Moroccan soils is the major abiotic constraint on citrus production area. The best choice of citrus rootstocks adequate and resistant is a better solution to avoid this problem. The aim of this study is to develop a fast test of citrus rootstocks screening towards alkalinity. The alkaline stress was applied on ten citrus rootstocks two month old, using irrigation with a Hoagland and Arnon solution added with 1 g CaCO(3)/L and adjusted at various pH levels 6, 7 and 9. Observations concerned symptoms incidence and severity of iron chlorosis after two months of rearing. Results permitted to classify Poncirus trifoliata and Flying dragon as the most sensitive to alkalinity stresses, whereas, Citrus volkameriana and Citrus macrophylla were resistant. These conclusions are equivalent with those obtained with old citrus rootstocks in field trials

    Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: Implications for weathering CO2 uptake at regional and global scales

    Get PDF
    The goal of this study was to highlight the occurrence of an additional proton-promoted weathering pathway of carbonate rocks in agricultural areas where N-fertilizers are extensively spread, and to estimate its consequences on riverine alkalinity and uptake of CO2 by weathering. We surveyed 25 small streams in the calcareous molassic Gascogne area located in the Garonne river basin (south-western France) that drain cultivated or forested catchments for their major element compositions during different hydrologic periods. Among these catchments, the Hay and the Montousse´, two experimental catchments, were monitored on a weekly basis. Studies in the literature from other small carbonate catchments in Europe were dissected in the same way. In areas of intensive agriculture, the molar ratio (Ca + Mg)/HCO3 in surface waters is significantly higher (0.7 on average) than in areas of low anthropogenic pressure (0.5). This corresponds to a decrease in riverine alkalinity, which can reach 80% during storm events. This relative loss of alkalinity correlates well with the NO3 content in surface waters. In cultivated areas, the contribution of atmospheric/soil CO2 to the total riverine alkalinity (CO2 ATM-SOIL/HCO3) is less than 50% (expected value for carbonate basins), and it decreases when the nitrate concentration increases. This loss of alkalinity can be attributed to the substitution of carbonic acid (natural weathering pathway) by protons produced by nitrification of Nfertilizers (anthropogenic weathering pathway) occurring in soils during carbonate dissolution. As a consequence of these processes, the alkalinity over the last 30 years shows a decreasing trend in the Save river (one of the main Garonne river tributaries, draining an agricultural catchment), while the nitrate and calcium plus magnesium contents are increasing. We estimated that the contribution of atmospheric/soil CO2 to riverine alkalinity decreased by about 7–17% on average for all the studied catchments. Using these values, the deficit of CO2 uptake can be estimated as up to 0.22–0.53 and 12–29 Tg1 yr1 CO2 on a country scale (France) and a global scale, respectively. These losses represent up to 5.7–13.4% and only 1.6–3.8% of the total CO2 flux naturally consumed by carbonate dissolution, for France and on a global scale, respectively. Nevertheless, this loss of alkalinity relative to the Ca + Mg content relates to carbonate weathering by protons from N-fertilizers nitrification, which is a net source of CO2 for the atmosphere. This anthropogenic CO2 source is not negligible since it could reach 6–15% of CO2 uptake by natural silicate weathering and could consequently partly counterbalance this natural CO2 sink

    The use of diatom records to establish reference conditions for UK lakes subject to eutrophication

    Get PDF
    A knowledge of pre-disturbance conditions is important for setting realistic restoration targets for lakes. For European waters this is now a requirement of the European Council Water Framework Directive where ecological status must be assessed based on the degree to which present day conditions deviate from reference conditions. Here, we employ palaeolimnological techniques, principally inferences of total phosphorus from diatom assemblages (DI-TP) and classification of diatom composition data from the time slice in sediment cores dated to similar to 1850 AD, to define chemical and ecological reference conditions, respectively, for a range of UK lake types. The DI-TP results from 169 sites indicate that reference TP values for low alkalinity lakes are typically 3 m mean depth) generally had lower reference TP concentrations than the shallow sites. A small group of shallow marl lakes had concentrations of similar to 30 mu g L-1. Cluster analysis of diatom composition data from 106 lakes where the key pressure of interest was eutrophication identified three clusters, each associated with particular lake types, suggesting that the typology has ecological relevance, although poor cross matching of the diatom groups and the lake typology at type boundaries highlights the value of a site-specific approach to defining reference conditions. Finally the floristic difference between the reference and present day (surface sample) diatom assemblages of each site was estimated using the squared chord distance dissimilarity coefficient. Only 25 of the 106 lakes experienced insignificant change and the findings indicate that eutrophication has impacted all lake types with > 50% of sites exhibiting significant floristic change. The study illustrates the role of the sediment record in determining both chemical and ecological reference conditions, and assessing deviation from the latter. Whilst restoration targets may require modification in the future to account for climate induced alterations, the long temporal perspective offered by palaeolimnology ensures that such changes are assessed against a sound baseline

    Evidence of Springwater Acidification in the Vosges Mountains (North-East of France): Influence of Bedrock Buffering Capacity

    Get PDF
    Investigations on springwater acidity were carried out in the Vosges mountains (north-eastern France). Acid or poorly buffered spring and streamwaters were detected in the same area. The proportion of acid springwaters (pH < 5.6) is about 20% among 220 springs. The springwater pH on granite are equally spread between 5.0 and 6.8 whereas on sandstone a majority of springs is in the range 5.6 to 6.2. As a whole, but mainly on sandstone, from the 1960's to 1990's, the shape of the pH distributions shifts toward greater acidity. In the sandstone area, trends in pH, alkalinity, total hardness (corresponding to divalent cations), sulfate and nitrate were considered over the 30 yr period (1963-1996) in relation to the bedrock chemical composition. Kendall seasonal tau coefficients indicate that decreasing trends were significant for the first three parameters. Linear regression on the smoothed mean value revealed 18 and 90% decrease for pH and alkalinity respectively, for springwaters draining poor-base cation sandstone whereas only 8 and 30% decrease respectively, was observed on clay-enriched sandstone. On silica-enriched sandstone, alkalinity began to decrease in the early 70's as well as pH. Loss of alkalinity only occurred in the early 80's for springs draining clay enriched sandstone. This can be interpreted as a titration process by acid atmospheric inputs of the buffering capacity of weathering and exchange processes in the soils and the catchment bedrock. The nitrate presents an increasing step in the early seventies but possibly as a result of change in analytical technics and/or increase in atmospheric inputs mainly resulting from increase in fertiliser inputs in agricultural areas or in car traffic. Surprisingly no change in sulfate was noticed in any groups of springs probably as a result of the adsorption/mobilisation in the soils. These long-term trends in spring waters (1963-1996) confirmed the soil and streamwater acidification trends already mentioned in this region, in relation to acid atmospheric inputs since no climate nor forestry practice changes have been detected over the period. Moreover, in spite of acid atmospheric input reductions, no recovery can presently be detected

    Critical loads - report to Department of the Environment (IH contribution to study)

    Get PDF

    Report of the SNOMS Project 2006 to 2012, SNOMS SWIRE NOCS Ocean Monitoring System. Part 1: Narrative description

    No full text
    The ocean plays a major role in controlling the concentration of carbon dioxide (CO2) in the atmosphere. Increasing concentrations of CO2 in the atmosphere are a threat to the stability of the earth’s climate. A better understanding of the controlling role of the ocean will improve predictions of likely future changes in climate and the impact of the uptake of CO2 itself on marine eco-systems caused by the associated acidification of the ocean waters. The SNOMS Project (SWIRE NOCS Ocean Monitoring System) is a ground breaking joint research project supported by the Swire Group Trust, the Swire Educational Trust, the China Navigation Company (CNCo) and the Natural Environment Research Council. It collects high quality data on concentrations of CO2 in the surface layer of the ocean. It contributes to the international effort to better quantify (and understand the driving processes controlling) the exchanges of CO2 between the ocean and the atmosphere. In 2006 and 2007 a system that could be used on a commercial ship to provide data over periods of several months with only limited maintenance by the ships crew was designed and assembled by NOCS. The system was fitted to the CNCo ship the MV Pacific Celebes in May 2007. The onboard system was supported by web pages that monitored the progress of the ship and the functioning of the data collection system. To support the flow of data from the ship to the archiving of the data at the Carbon Dioxide Information Analysis Center (CDIAC in the USA) data processing procedures were developed for the quality control and systematic handling of the data. Data from samples of seawater collected by the ships crew and analysed in NOC (730 samples) have been used to confirm the consistency of the data from the automated measurement system on the ship. To examine the data collected between 2007 and 2012 the movements of the ship are divided into 16 voyages. Initially The Celebes traded on a route circum-navigating the globe via the Panama and Suez Canals. In 2009 the route shifted to one between Australia and New Zealand to USA and Canada. Analysis of the data is an on going process. It has demonstrated that the system produces reliable data. Data are capable of improving existing estimates of seasonal variability. The work has improved knowledge of gas exchange processes. Data from the crew-collected-samples are helping improve our ability to estimate alkalinity in different areas. This helps with the study of ocean acidification. Data from the 9 round trips in the Pacific are currently being examined along with data made available by the NOAA-PMEL laboratory forming time series from 2004 to 2012. The data from the Pacific route are of considerable interest. One reason is that the data monitors variations in the fluxes of CO2 associated with the current that flows westwards along the equator. This is one of the major natural sources of CO2 from the ocean into the atmosphere

    Practicing Your Protocols

    Get PDF
    The purpose of this resource is to have students learn to use the hydrology instruments and collect the hydrology data accurately. In the classroom, students practice using the instruments or kits for protocols, exploring the range of measurements and sources of variation and error. Educational levels: Primary elementary, Intermediate elementary, Middle school, High school

    A decision support tool for landfill methane generation and gas collection

    Get PDF
    This study presents a decision support tool (DST) to enhance methane generation at individual landfill sites. To date there is no such tool available to provide landfill decision makers with clear and simplified information to evaluate biochemical processes within a landfill site, to assess performance of gas production and to identify potential remedies to any issues. The current lack in understanding stems from the complexity of the landfill waste degradation process. Two scoring sets for landfill gas production performance are calculated with the tool: (1) methane output score which measures the deviation of the actual methane output rate at each site which the prediction generated by the first order decay model LandGEM; and (2) landfill gas indicators’ score, which measures the deviation of the landfill gas indicators from their ideal ranges for optimal methane generation conditions. Landfill gas indicators include moisture content, temperature, alkalinity, pH, BOD, COD, BOD/COD ratio, ammonia, chloride, iron and zinc. A total landfill gas indicator score is provided using multi-criteria analysis to calculate the sum of weighted scores for each indicator. The weights for each indicator are calculated using an analytical hierarchical process. The tool is tested against five real scenarios for landfill sites in UK with a range of good, average and poor landfill methane generation over a one year period (2012). An interpretation of the results is given for each scenario and recommendations are highlighted for methane output rate enhancement. Results demonstrate how the tool can help landfill managers and operators to enhance their understanding of methane generation at a site-specific level, track landfill methane generation over time, compare and rank sites, and identify problems areas within a landfill site
    corecore