899 research outputs found

    LabelFusion: A Pipeline for Generating Ground Truth Labels for Real RGBD Data of Cluttered Scenes

    Full text link
    Deep neural network (DNN) architectures have been shown to outperform traditional pipelines for object segmentation and pose estimation using RGBD data, but the performance of these DNN pipelines is directly tied to how representative the training data is of the true data. Hence a key requirement for employing these methods in practice is to have a large set of labeled data for your specific robotic manipulation task, a requirement that is not generally satisfied by existing datasets. In this paper we develop a pipeline to rapidly generate high quality RGBD data with pixelwise labels and object poses. We use an RGBD camera to collect video of a scene from multiple viewpoints and leverage existing reconstruction techniques to produce a 3D dense reconstruction. We label the 3D reconstruction using a human assisted ICP-fitting of object meshes. By reprojecting the results of labeling the 3D scene we can produce labels for each RGBD image of the scene. This pipeline enabled us to collect over 1,000,000 labeled object instances in just a few days. We use this dataset to answer questions related to how much training data is required, and of what quality the data must be, to achieve high performance from a DNN architecture

    Improving 6D Pose Estimation of Objects in Clutter via Physics-aware Monte Carlo Tree Search

    Full text link
    This work proposes a process for efficiently searching over combinations of individual object 6D pose hypotheses in cluttered scenes, especially in cases involving occlusions and objects resting on each other. The initial set of candidate object poses is generated from state-of-the-art object detection and global point cloud registration techniques. The best-scored pose per object by using these techniques may not be accurate due to overlaps and occlusions. Nevertheless, experimental indications provided in this work show that object poses with lower ranks may be closer to the real poses than ones with high ranks according to registration techniques. This motivates a global optimization process for improving these poses by taking into account scene-level physical interactions between objects. It also implies that the Cartesian product of candidate poses for interacting objects must be searched so as to identify the best scene-level hypothesis. To perform the search efficiently, the candidate poses for each object are clustered so as to reduce their number but still keep a sufficient diversity. Then, searching over the combinations of candidate object poses is performed through a Monte Carlo Tree Search (MCTS) process that uses the similarity between the observed depth image of the scene and a rendering of the scene given the hypothesized pose as a score that guides the search procedure. MCTS handles in a principled way the tradeoff between fine-tuning the most promising poses and exploring new ones, by using the Upper Confidence Bound (UCB) technique. Experimental results indicate that this process is able to quickly identify in cluttered scenes physically-consistent object poses that are significantly closer to ground truth compared to poses found by point cloud registration methods.Comment: 8 pages, 4 figure
    • …
    corecore