212 research outputs found

    Degrees of Freedom of Two-Hop Wireless Networks: "Everyone Gets the Entire Cake"

    Full text link
    We show that fully connected two-hop wireless networks with K sources, K relays and K destinations have K degrees of freedom both in the case of time-varying channel coefficients and in the case of constant channel coefficients (in which case the result holds for almost all values of constant channel coefficients). Our main contribution is a new achievability scheme which we call Aligned Network Diagonalization. This scheme allows the data streams transmitted by the sources to undergo a diagonal linear transformation from the sources to the destinations, thus being received free of interference by their intended destination. In addition, we extend our scheme to multi-hop networks with fully connected hops, and multi-hop networks with MIMO nodes, for which the degrees of freedom are also fully characterized.Comment: Presented at the 2012 Allerton Conference. Submitted to IEEE Transactions on Information Theor

    Degrees of Freedom of Uplink-Downlink Multiantenna Cellular Networks

    Full text link
    An uplink-downlink two-cell cellular network is studied in which the first base station (BS) with M1M_1 antennas receives independent messages from its N1N_1 serving users, while the second BS with M2M_2 antennas transmits independent messages to its N2N_2 serving users. That is, the first and second cells operate as uplink and downlink, respectively. Each user is assumed to have a single antenna. Under this uplink-downlink setting, the sum degrees of freedom (DoF) is completely characterized as the minimum of (N1N2+min⁑(M1,N1)(N1βˆ’N2)++min⁑(M2,N2)(N2βˆ’N1)+)/max⁑(N1,N2)(N_1N_2+\min(M_1,N_1)(N_1-N_2)^++\min(M_2,N_2)(N_2-N_1)^+)/\max(N_1,N_2), M1+N2,M2+N1M_1+N_2,M_2+N_1, max⁑(M1,M2)\max(M_1,M_2), and max⁑(N1,N2)\max(N_1,N_2), where a+a^+ denotes max⁑(0,a)\max(0,a). The result demonstrates that, for a broad class of network configurations, operating one of the two cells as uplink and the other cell as downlink can strictly improve the sum DoF compared to the conventional uplink or downlink operation, in which both cells operate as either uplink or downlink. The DoF gain from such uplink-downlink operation is further shown to be achievable for heterogeneous cellular networks having hotspots and with delayed channel state information.Comment: 22 pages, 11 figures, in revision for IEEE Transactions on Information Theor

    Communication-Aware Computing for Edge Processing

    Full text link
    We consider a mobile edge computing problem, in which mobile users offload their computation tasks to computing nodes (e.g., base stations) at the network edge. The edge nodes compute the requested functions and communicate the computed results to the users via wireless links. For this problem, we propose a Universal Coded Edge Computing (UCEC) scheme for linear functions to simultaneously minimize the load of computation at the edge nodes, and maximize the physical-layer communication efficiency towards the mobile users. In the proposed UCEC scheme, edge nodes create coded inputs of the users, from which they compute coded output results. Then, the edge nodes utilize the computed coded results to create communication messages that zero-force all the interference signals over the air at each user. Specifically, the proposed scheme is universal since the coded computations performed at the edge nodes are oblivious of the channel states during the communication process from the edge nodes to the users.Comment: To Appear in ISIT 201
    • …
    corecore