8,579 research outputs found

    On the Approximability and Hardness of the Minimum Connected Dominating Set with Routing Cost Constraint

    Full text link
    In the problem of minimum connected dominating set with routing cost constraint, we are given a graph G=(V,E)G=(V,E), and the goal is to find the smallest connected dominating set DD of GG such that, for any two non-adjacent vertices uu and vv in GG, the number of internal nodes on the shortest path between uu and vv in the subgraph of GG induced by D{u,v}D \cup \{u,v\} is at most α\alpha times that in GG. For general graphs, the only known previous approximability result is an O(logn)O(\log n)-approximation algorithm (n=Vn=|V|) for α=1\alpha = 1 by Ding et al. For any constant α>1\alpha > 1, we give an O(n11α(logn)1α)O(n^{1-\frac{1}{\alpha}}(\log n)^{\frac{1}{\alpha}})-approximation algorithm. When α5\alpha \geq 5, we give an O(nlogn)O(\sqrt{n}\log n)-approximation algorithm. Finally, we prove that, when α=2\alpha =2, unless NPDTIME(npolylogn)NP \subseteq DTIME(n^{poly\log n}), for any constant ϵ>0\epsilon > 0, the problem admits no polynomial-time 2log1ϵn2^{\log^{1-\epsilon}n}-approximation algorithm, improving upon the Ω(logn)\Omega(\log n) bound by Du et al. (albeit under a stronger hardness assumption)

    Bayesian Parameter Estimation for Latent Markov Random Fields and Social Networks

    Get PDF
    Undirected graphical models are widely used in statistics, physics and machine vision. However Bayesian parameter estimation for undirected models is extremely challenging, since evaluation of the posterior typically involves the calculation of an intractable normalising constant. This problem has received much attention, but very little of this has focussed on the important practical case where the data consists of noisy or incomplete observations of the underlying hidden structure. This paper specifically addresses this problem, comparing two alternative methodologies. In the first of these approaches particle Markov chain Monte Carlo (Andrieu et al., 2010) is used to efficiently explore the parameter space, combined with the exchange algorithm (Murray et al., 2006) for avoiding the calculation of the intractable normalising constant (a proof showing that this combination targets the correct distribution in found in a supplementary appendix online). This approach is compared with approximate Bayesian computation (Pritchard et al., 1999). Applications to estimating the parameters of Ising models and exponential random graphs from noisy data are presented. Each algorithm used in the paper targets an approximation to the true posterior due to the use of MCMC to simulate from the latent graphical model, in lieu of being able to do this exactly in general. The supplementary appendix also describes the nature of the resulting approximation.Comment: 26 pages, 2 figures, accepted in Journal of Computational and Graphical Statistics (http://www.amstat.org/publications/jcgs.cfm
    corecore