112,751 research outputs found

    Linear-time Algorithms for Eliminating Claws in Graphs

    Full text link
    Since many NP-complete graph problems have been shown polynomial-time solvable when restricted to claw-free graphs, we study the problem of determining the distance of a given graph to a claw-free graph, considering vertex elimination as measure. CLAW-FREE VERTEX DELETION (CFVD) consists of determining the minimum number of vertices to be removed from a graph such that the resulting graph is claw-free. Although CFVD is NP-complete in general and recognizing claw-free graphs is still a challenge, where the current best algorithm for a graph GG has the same running time of the best algorithm for matrix multiplication, we present linear-time algorithms for CFVD on weighted block graphs and weighted graphs with bounded treewidth. Furthermore, we show that this problem can be solved in linear time by a simpler algorithm on forests, and we determine the exact values for full kk-ary trees. On the other hand, we show that CLAW-FREE VERTEX DELETION is NP-complete even when the input graph is a split graph. We also show that the problem is hard to approximate within any constant factor better than 22, assuming the Unique Games Conjecture.Comment: 20 page

    Revealing Network Structure, Confidentially: Improved Rates for Node-Private Graphon Estimation

    Full text link
    Motivated by growing concerns over ensuring privacy on social networks, we develop new algorithms and impossibility results for fitting complex statistical models to network data subject to rigorous privacy guarantees. We consider the so-called node-differentially private algorithms, which compute information about a graph or network while provably revealing almost no information about the presence or absence of a particular node in the graph. We provide new algorithms for node-differentially private estimation for a popular and expressive family of network models: stochastic block models and their generalization, graphons. Our algorithms improve on prior work, reducing their error quadratically and matching, in many regimes, the optimal nonprivate algorithm. We also show that for the simplest random graph models (G(n,p)G(n,p) and G(n,m)G(n,m)), node-private algorithms can be qualitatively more accurate than for more complex models---converging at a rate of 1ϵ2n3\frac{1}{\epsilon^2 n^{3}} instead of 1ϵ2n2\frac{1}{\epsilon^2 n^2}. This result uses a new extension lemma for differentially private algorithms that we hope will be broadly useful
    • …
    corecore