15,504 research outputs found

    Unsupervised Generative Modeling Using Matrix Product States

    Full text link
    Generative modeling, which learns joint probability distribution from data and generates samples according to it, is an important task in machine learning and artificial intelligence. Inspired by probabilistic interpretation of quantum physics, we propose a generative model using matrix product states, which is a tensor network originally proposed for describing (particularly one-dimensional) entangled quantum states. Our model enjoys efficient learning analogous to the density matrix renormalization group method, which allows dynamically adjusting dimensions of the tensors and offers an efficient direct sampling approach for generative tasks. We apply our method to generative modeling of several standard datasets including the Bars and Stripes, random binary patterns and the MNIST handwritten digits to illustrate the abilities, features and drawbacks of our model over popular generative models such as Hopfield model, Boltzmann machines and generative adversarial networks. Our work sheds light on many interesting directions of future exploration on the development of quantum-inspired algorithms for unsupervised machine learning, which are promisingly possible to be realized on quantum devices.Comment: 11 pages, 12 figures (not including the TNs) GitHub Page: https://congzlwag.github.io/UnsupGenModbyMPS

    Deep learning systems as complex networks

    Full text link
    Thanks to the availability of large scale digital datasets and massive amounts of computational power, deep learning algorithms can learn representations of data by exploiting multiple levels of abstraction. These machine learning methods have greatly improved the state-of-the-art in many challenging cognitive tasks, such as visual object recognition, speech processing, natural language understanding and automatic translation. In particular, one class of deep learning models, known as deep belief networks, can discover intricate statistical structure in large data sets in a completely unsupervised fashion, by learning a generative model of the data using Hebbian-like learning mechanisms. Although these self-organizing systems can be conveniently formalized within the framework of statistical mechanics, their internal functioning remains opaque, because their emergent dynamics cannot be solved analytically. In this article we propose to study deep belief networks using techniques commonly employed in the study of complex networks, in order to gain some insights into the structural and functional properties of the computational graph resulting from the learning process.Comment: 20 pages, 9 figure
    • …
    corecore