1,378 research outputs found

    Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives: Offline and Online

    Get PDF
    The framework of budget-feasible mechanism design studies procurement auctions where the auctioneer (buyer) aims to maximize his valuation function subject to a hard budget constraint. We study the problem of designing truthful mechanisms that have good approximation guarantees and never pay the participating agents (sellers) more than the budget. We focus on the case of general (non-monotone) submodular valuation functions and derive the first truthful, budget-feasible and O(1)O(1)-approximate mechanisms that run in polynomial time in the value query model, for both offline and online auctions. Prior to our work, the only O(1)O(1)-approximation mechanism known for non-monotone submodular objectives required an exponential number of value queries. At the heart of our approach lies a novel greedy algorithm for non-monotone submodular maximization under a knapsack constraint. Our algorithm builds two candidate solutions simultaneously (to achieve a good approximation), yet ensures that agents cannot jump from one solution to the other (to implicitly enforce truthfulness). Ours is the first mechanism for the problem where---crucially---the agents are not ordered with respect to their marginal value per cost. This allows us to appropriately adapt these ideas to the online setting as well. To further illustrate the applicability of our approach, we also consider the case where additional feasibility constraints are present. We obtain O(p)O(p)-approximation mechanisms for both monotone and non-monotone submodular objectives, when the feasible solutions are independent sets of a pp-system. With the exception of additive valuation functions, no mechanisms were known for this setting prior to our work. Finally, we provide lower bounds suggesting that, when one cares about non-trivial approximation guarantees in polynomial time, our results are asymptotically best possible.Comment: Accepted to EC 201

    Stationary probability density of stochastic search processes in global optimization

    Full text link
    A method for the construction of approximate analytical expressions for the stationary marginal densities of general stochastic search processes is proposed. By the marginal densities, regions of the search space that with high probability contain the global optima can be readily defined. The density estimation procedure involves a controlled number of linear operations, with a computational cost per iteration that grows linearly with problem size

    Fast network configuration in Software Defined Networking

    Get PDF
    Software Defined Networking (SDN) provides a framework to dynamically adjust and re-program the data plane with the use of flow rules. The realization of highly adaptive SDNs with the ability to respond to changing demands or recover after a network failure in a short period of time, hinges on efficient updates of flow rules. We model the time to deploy a set of flow rules by the update time at the bottleneck switch, and formulate the problem of selecting paths to minimize the deployment time under feasibility constraints as a mixed integer linear program (MILP). To reduce the computation time of determining flow rules, we propose efficient heuristics designed to approximate the minimum-deployment-time solution by relaxing the MILP or selecting the paths sequentially. Through extensive simulations we show that our algorithms outperform current, shortest path based solutions by reducing the total network configuration time up to 55% while having similar packet loss, in the considered scenarios. We also demonstrate that in a networked environment with a certain fraction of failed links, our algorithms are able to reduce the average time to reestablish disrupted flows by 40%

    Streaming Non-monotone Submodular Maximization: Personalized Video Summarization on the Fly

    Full text link
    The need for real time analysis of rapidly producing data streams (e.g., video and image streams) motivated the design of streaming algorithms that can efficiently extract and summarize useful information from massive data "on the fly". Such problems can often be reduced to maximizing a submodular set function subject to various constraints. While efficient streaming methods have been recently developed for monotone submodular maximization, in a wide range of applications, such as video summarization, the underlying utility function is non-monotone, and there are often various constraints imposed on the optimization problem to consider privacy or personalization. We develop the first efficient single pass streaming algorithm, Streaming Local Search, that for any streaming monotone submodular maximization algorithm with approximation guarantee α\alpha under a collection of independence systems I{\cal I}, provides a constant 1/(1+2/α+1/α+2d(1+α))1/\big(1+2/\sqrt{\alpha}+1/\alpha +2d(1+\sqrt{\alpha})\big) approximation guarantee for maximizing a non-monotone submodular function under the intersection of I{\cal I} and dd knapsack constraints. Our experiments show that for video summarization, our method runs more than 1700 times faster than previous work, while maintaining practically the same performance
    • …
    corecore