10 research outputs found

    Applicability of the qq-Analogue of Zeilberger's Algorithm

    Get PDF
    The applicability or terminating condition for the ordinary case of Zeilberger's algorithm was recently obtained by Abramov. For the qq-analogue, the question of whether a bivariate qq-hypergeometric term has a qZqZ-pair remains open. Le has found a solution to this problem when the given bivariate qq-hypergeometric term is a rational function in certain powers of qq. We solve the problem for the general case by giving a characterization of bivariate qq-hypergeometric terms for which the qq-analogue of Zeilberger's algorithm terminates. Moreover, we give an algorithm to determine whether a bivariate qq-hypergeometric term has a qZqZ-pair.Comment: 15 page

    Properties of q

    Full text link

    Fast Computation of the NN-th Term of a qq-Holonomic Sequence and Applications

    Get PDF
    33 pages. Long version of the conference paper Computing the NN-th term of a qq-holonomic sequence. Proceedings ISSAC'20, pp. 46–53, ACM Press, 2020 (https://hal.inria.fr/hal-02882885)International audienceIn 1977, Strassen invented a famous baby-step/giant-step algorithm that computes the factorial N!N! in arithmetic complexity quasi-linear in N\sqrt{N}. In 1988, the Chudnovsky brothers generalized Strassen’s algorithm to the computation of the NN-th term of any holonomic sequence in essentially the same arithmetic complexity. We design qq-analogues of these algorithms. We first extend Strassen’s algorithm to the computation of the qq-factorial of NN, then Chudnovskys' algorithm to the computation of the NN-th term of any qq-holonomic sequence. Both algorithms work in arithmetic complexity quasi-linear in N\sqrt{N}; surprisingly, they are simpler than their analogues in the holonomic case. We provide a detailed cost analysis, in both arithmetic and bit complexity models. Moreover, we describe various algorithmic consequences, including the acceleration of polynomial and rational solving of linear qq-differential equations, and the fast evaluation of large classes of polynomials, including a family recently considered by Nogneng and Schost

    Algorithms for q-Hypergeometric Summation in Computer Algebra

    Get PDF
    This paper describes three algorithms for q-hypergeometric summation
    corecore