1,471 research outputs found

    Linear-time algorithms for testing the satisfiability of propositional horn formulae

    Get PDF
    AbstractNew algorithms for deciding whether a (propositional) Horn formula is satisfiable are presented. If the Horn formula A contains K distinct propositional letters and if it is assumed that they are exactly P1,…, PK, the two algorithms presented in this paper run in time O(N), where N is the total number of occurrences of literals in A. By representing a Horn proposition as a graph, the satisfiability problem can be formulated as a data flow problem, a certain type of pebbling. The difference between the two algorithms presented here is the strategy used for pebbling the graph. The first algorithm is based on the principle used for finding the set of nonterminals of a context-free grammar from which the empty string can be derived. The second algorithm is a graph traversal and uses a “call-by-need” strategy. This algorithm uses an attribute grammar to translate a propositional Horn formula to its corresponding graph in linear time. Our formulation of the satisfiability problem as a data flow problem appears to be new and suggests the possibility of improving efficiency using parallel processors

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    On Tackling the Limits of Resolution in SAT Solving

    Full text link
    The practical success of Boolean Satisfiability (SAT) solvers stems from the CDCL (Conflict-Driven Clause Learning) approach to SAT solving. However, from a propositional proof complexity perspective, CDCL is no more powerful than the resolution proof system, for which many hard examples exist. This paper proposes a new problem transformation, which enables reducing the decision problem for formulas in conjunctive normal form (CNF) to the problem of solving maximum satisfiability over Horn formulas. Given the new transformation, the paper proves a polynomial bound on the number of MaxSAT resolution steps for pigeonhole formulas. This result is in clear contrast with earlier results on the length of proofs of MaxSAT resolution for pigeonhole formulas. The paper also establishes the same polynomial bound in the case of modern core-guided MaxSAT solvers. Experimental results, obtained on CNF formulas known to be hard for CDCL SAT solvers, show that these can be efficiently solved with modern MaxSAT solvers
    • …
    corecore