1,616 research outputs found

    Monomial Testing and Applications

    Full text link
    In this paper, we devise two algorithms for the problem of testing qq-monomials of degree kk in any multivariate polynomial represented by a circuit, regardless of the primality of qq. One is an O(2k)O^*(2^k) time randomized algorithm. The other is an O(12.8k)O^*(12.8^k) time deterministic algorithm for the same qq-monomial testing problem but requiring the polynomials to be represented by tree-like circuits. Several applications of qq-monomial testing are also given, including a deterministic O(12.8mk)O^*(12.8^{mk}) upper bound for the mm-set kk-packing problem.Comment: 17 pages, 4 figures, submitted FAW-AAIM 2013. arXiv admin note: substantial text overlap with arXiv:1302.5898; and text overlap with arXiv:1007.2675, arXiv:1007.2678, arXiv:1007.2673 by other author

    Faster Deterministic Algorithms for Packing, Matching and tt-Dominating Set Problems

    Full text link
    In this paper, we devise three deterministic algorithms for solving the mm-set kk-packing, mm-dimensional kk-matching, and tt-dominating set problems in time O(5.44mk)O^*(5.44^{mk}), O(5.44(m1)k)O^*(5.44^{(m-1)k}) and O(5.44t)O^*(5.44^{t}), respectively. Although recently there has been remarkable progress on randomized solutions to those problems, our bounds make good improvements on the best known bounds for deterministic solutions to those problems.Comment: ISAAC13 Submission. arXiv admin note: substantial text overlap with arXiv:1303.047

    The Complexity of Testing Monomials in Multivariate Polynomials

    Full text link
    The work in this paper is to initiate a theory of testing monomials in multivariate polynomials. The central question is to ask whether a polynomial represented by certain economically compact structure has a multilinear monomial in its sum-product expansion. The complexity aspects of this problem and its variants are investigated with two folds of objectives. One is to understand how this problem relates to critical problems in complexity, and if so to what extent. The other is to exploit possibilities of applying algebraic properties of polynomials to the study of those problems. A series of results about ΠΣΠ\Pi\Sigma\Pi and ΠΣ\Pi\Sigma polynomials are obtained in this paper, laying a basis for further study along this line

    A Machine-Checked Formalization of the Generic Model and the Random Oracle Model

    Get PDF
    Most approaches to the formal analyses of cryptographic protocols make the perfect cryptography assumption, i.e. the hypothese that there is no way to obtain knowledge about the plaintext pertaining to a ciphertext without knowing the key. Ideally, one would prefer to rely on a weaker hypothesis on the computational cost of gaining information about the plaintext pertaining to a ciphertext without knowing the key. Such a view is permitted by the Generic Model and the Random Oracle Model which provide non-standard computational models in which one may reason about the computational cost of breaking a cryptographic scheme. Using the proof assistant Coq, we provide a machine-checked account of the Generic Model and the Random Oracle Mode

    Approximating Multilinear Monomial Coefficients and Maximum Multilinear Monomials in Multivariate Polynomials

    Full text link
    This paper is our third step towards developing a theory of testing monomials in multivariate polynomials and concentrates on two problems: (1) How to compute the coefficients of multilinear monomials; and (2) how to find a maximum multilinear monomial when the input is a ΠΣΠ\Pi\Sigma\Pi polynomial. We first prove that the first problem is \#P-hard and then devise a O(3ns(n))O^*(3^ns(n)) upper bound for this problem for any polynomial represented by an arithmetic circuit of size s(n)s(n). Later, this upper bound is improved to O(2n)O^*(2^n) for ΠΣΠ\Pi\Sigma\Pi polynomials. We then design fully polynomial-time randomized approximation schemes for this problem for ΠΣ\Pi\Sigma polynomials. On the negative side, we prove that, even for ΠΣΠ\Pi\Sigma\Pi polynomials with terms of degree 2\le 2, the first problem cannot be approximated at all for any approximation factor 1\ge 1, nor {\em "weakly approximated"} in a much relaxed setting, unless P=NP. For the second problem, we first give a polynomial time λ\lambda-approximation algorithm for ΠΣΠ\Pi\Sigma\Pi polynomials with terms of degrees no more a constant λ2\lambda \ge 2. On the inapproximability side, we give a n(1ϵ)/2n^{(1-\epsilon)/2} lower bound, for any ϵ>0,\epsilon >0, on the approximation factor for ΠΣΠ\Pi\Sigma\Pi polynomials. When terms in these polynomials are constrained to degrees 2\le 2, we prove a 1.04761.0476 lower bound, assuming PNPP\not=NP; and a higher 1.06041.0604 lower bound, assuming the Unique Games Conjecture

    Deterministic Factorization of Sparse Polynomials with Bounded Individual Degree

    Full text link
    In this paper we study the problem of deterministic factorization of sparse polynomials. We show that if fF[x1,x2,,xn]f \in \mathbb{F}[x_{1},x_{2},\ldots ,x_{n}] is a polynomial with ss monomials, with individual degrees of its variables bounded by dd, then ff can be deterministically factored in time spoly(d)logns^{\mathrm{poly}(d) \log n}. Prior to our work, the only efficient factoring algorithms known for this class of polynomials were randomized, and other than for the cases of d=1d=1 and d=2d=2, only exponential time deterministic factoring algorithms were known. A crucial ingredient in our proof is a quasi-polynomial sparsity bound for factors of sparse polynomials of bounded individual degree. In particular we show if ff is an ss-sparse polynomial in nn variables, with individual degrees of its variables bounded by dd, then the sparsity of each factor of ff is bounded by sO(d2logn)s^{O({d^2\log{n}})}. This is the first nontrivial bound on factor sparsity for d>2d>2. Our sparsity bound uses techniques from convex geometry, such as the theory of Newton polytopes and an approximate version of the classical Carath\'eodory's Theorem. Our work addresses and partially answers a question of von zur Gathen and Kaltofen (JCSS 1985) who asked whether a quasi-polynomial bound holds for the sparsity of factors of sparse polynomials

    Bounded-degree factors of lacunary multivariate polynomials

    Full text link
    In this paper, we present a new method for computing bounded-degree factors of lacunary multivariate polynomials. In particular for polynomials over number fields, we give a new algorithm that takes as input a multivariate polynomial f in lacunary representation and a degree bound d and computes the irreducible factors of degree at most d of f in time polynomial in the lacunary size of f and in d. Our algorithm, which is valid for any field of zero characteristic, is based on a new gap theorem that enables reducing the problem to several instances of (a) the univariate case and (b) low-degree multivariate factorization. The reduction algorithms we propose are elementary in that they only manipulate the exponent vectors of the input polynomial. The proof of correctness and the complexity bounds rely on the Newton polytope of the polynomial, where the underlying valued field consists of Puiseux series in a single variable.Comment: 31 pages; Long version of arXiv:1401.4720 with simplified proof
    corecore