2 research outputs found

    Asynchronous approach in the plane: A deterministic polynomial algorithm

    Full text link
    In this paper we study the task of approach of two mobile agents having the same limited range of vision and moving asynchronously in the plane. This task consists in getting them in finite time within each other's range of vision. The agents execute the same deterministic algorithm and are assumed to have a compass showing the cardinal directions as well as a unit measure. On the other hand, they do not share any global coordinates system (like GPS), cannot communicate and have distinct labels. Each agent knows its label but does not know the label of the other agent or the initial position of the other agent relative to its own. The route of an agent is a sequence of segments that are subsequently traversed in order to achieve approach. For each agent, the computation of its route depends only on its algorithm and its label. An adversary chooses the initial positions of both agents in the plane and controls the way each of them moves along every segment of the routes, in particular by arbitrarily varying the speeds of the agents. A deterministic approach algorithm is a deterministic algorithm that always allows two agents with any distinct labels to solve the task of approach regardless of the choices and the behavior of the adversary. The cost of a complete execution of an approach algorithm is the length of both parts of route travelled by the agents until approach is completed. Let Δ\Delta and ll be the initial distance separating the agents and the length of the shortest label, respectively. Assuming that Δ\Delta and ll are unknown to both agents, does there exist a deterministic approach algorithm always working at a cost that is polynomial in Δ\Delta and ll? In this paper, we provide a positive answer to the above question by designing such an algorithm
    corecore