631 research outputs found

    Transversal structures on triangulations: a combinatorial study and straight-line drawings

    Get PDF
    This article focuses on a combinatorial structure specific to triangulated plane graphs with quadrangular outer face and no separating triangle, which are called irreducible triangulations. The structure has been introduced by Xin He under the name of regular edge-labelling and consists of two bipolar orientations that are transversal. For this reason, the terminology used here is that of transversal structures. The main results obtained in the article are a bijection between irreducible triangulations and ternary trees, and a straight-line drawing algorithm for irreducible triangulations. For a random irreducible triangulation with nn vertices, the grid size of the drawing is asymptotically with high probability 11n/27×11n/2711n/27\times 11n/27 up to an additive error of \cO(\sqrt{n}). In contrast, the best previously known algorithm for these triangulations only guarantees a grid size (n/21)×n/2(\lceil n/2\rceil -1)\times \lfloor n/2\rfloor.Comment: 42 pages, the second version is shorter, focusing on the bijection (with application to counting) and on the graph drawing algorithm. The title has been slightly change

    Dissections, orientations, and trees, with applications to optimal mesh encoding and to random sampling

    Full text link
    We present a bijection between some quadrangular dissections of an hexagon and unrooted binary trees, with interesting consequences for enumeration, mesh compression and graph sampling. Our bijection yields an efficient uniform random sampler for 3-connected planar graphs, which turns out to be determinant for the quadratic complexity of the current best known uniform random sampler for labelled planar graphs [{\bf Fusy, Analysis of Algorithms 2005}]. It also provides an encoding for the set P(n)\mathcal{P}(n) of nn-edge 3-connected planar graphs that matches the entropy bound 1nlog2P(n)=2+o(1)\frac1n\log_2|\mathcal{P}(n)|=2+o(1) bits per edge (bpe). This solves a theoretical problem recently raised in mesh compression, as these graphs abstract the combinatorial part of meshes with spherical topology. We also achieve the {optimal parametric rate} 1nlog2P(n,i,j)\frac1n\log_2|\mathcal{P}(n,i,j)| bpe for graphs of P(n)\mathcal{P}(n) with ii vertices and jj faces, matching in particular the optimal rate for triangulations. Our encoding relies on a linear time algorithm to compute an orientation associated to the minimal Schnyder wood of a 3-connected planar map. This algorithm is of independent interest, and it is for instance a key ingredient in a recent straight line drawing algorithm for 3-connected planar graphs [\bf Bonichon et al., Graph Drawing 2005]

    Mixing Times of Markov Chains on Degree Constrained Orientations of Planar Graphs

    Full text link
    We study Markov chains for α\alpha-orientations of plane graphs, these are orientations where the outdegree of each vertex is prescribed by the value of a given function α\alpha. The set of α\alpha-orientations of a plane graph has a natural distributive lattice structure. The moves of the up-down Markov chain on this distributive lattice corresponds to reversals of directed facial cycles in the α\alpha-orientation. We have a positive and several negative results regarding the mixing time of such Markov chains. A 2-orientation of a plane quadrangulation is an orientation where every inner vertex has outdegree 2. We show that there is a class of plane quadrangulations such that the up-down Markov chain on the 2-orientations of these quadrangulations is slowly mixing. On the other hand the chain is rapidly mixing on 2-orientations of quadrangulations with maximum degree at most 4. Regarding examples for slow mixing we also revisit the case of 3-orientations of triangulations which has been studied before by Miracle et al.. Our examples for slow mixing are simpler and have a smaller maximum degree, Finally we present the first example of a function α\alpha and a class of plane triangulations of constant maximum degree such that the up-down Markov chain on the α\alpha-orientations of these graphs is slowly mixing

    Schnyder woods for higher genus triangulated surfaces, with applications to encoding

    Full text link
    Schnyder woods are a well-known combinatorial structure for plane triangulations, which yields a decomposition into 3 spanning trees. We extend here definitions and algorithms for Schnyder woods to closed orientable surfaces of arbitrary genus. In particular, we describe a method to traverse a triangulation of genus gg and compute a so-called gg-Schnyder wood on the way. As an application, we give a procedure to encode a triangulation of genus gg and nn vertices in 4n+O(glog(n))4n+O(g \log(n)) bits. This matches the worst-case encoding rate of Edgebreaker in positive genus. All the algorithms presented here have execution time O((n+g)g)O((n+g)g), hence are linear when the genus is fixed.Comment: 27 pages, to appear in a special issue of Discrete and Computational Geometr

    Schnyder decompositions for regular plane graphs and application to drawing

    Full text link
    Schnyder woods are decompositions of simple triangulations into three edge-disjoint spanning trees crossing each other in a specific way. In this article, we define a generalization of Schnyder woods to dd-angulations (plane graphs with faces of degree dd) for all d3d\geq 3. A \emph{Schnyder decomposition} is a set of dd spanning forests crossing each other in a specific way, and such that each internal edge is part of exactly d2d-2 of the spanning forests. We show that a Schnyder decomposition exists if and only if the girth of the dd-angulation is dd. As in the case of Schnyder woods (d=3d=3), there are alternative formulations in terms of orientations ("fractional" orientations when d5d\geq 5) and in terms of corner-labellings. Moreover, the set of Schnyder decompositions on a fixed dd-angulation of girth dd is a distributive lattice. We also show that the structures dual to Schnyder decompositions (on dd-regular plane graphs of mincut dd rooted at a vertex vv^*) are decompositions into dd spanning trees rooted at vv^* such that each edge not incident to vv^* is used in opposite directions by two trees. Additionally, for even values of dd, we show that a subclass of Schnyder decompositions, which are called even, enjoy additional properties that yield a reduced formulation; in the case d=4, these correspond to well-studied structures on simple quadrangulations (2-orientations and partitions into 2 spanning trees). In the case d=4, the dual of even Schnyder decompositions yields (planar) orthogonal and straight-line drawing algorithms. For a 4-regular plane graph GG of mincut 4 with nn vertices plus a marked vertex vv, the vertices of G\vG\backslash v are placed on a (n1)×(n1)(n-1) \times (n-1) grid according to a permutation pattern, and in the orthogonal drawing each of the 2n22n-2 edges of G\vG\backslash v has exactly one bend. Embedding also the marked vertex vv is doable at the cost of two additional rows and columns and 8 additional bends for the 4 edges incident to vv. We propose a further compaction step for the drawing algorithm and show that the obtained grid-size is strongly concentrated around 25n/32×25n/3225n/32\times 25n/32 for a uniformly random instance with nn vertices

    Generic method for bijections between blossoming trees and planar maps

    Full text link
    This article presents a unified bijective scheme between planar maps and blossoming trees, where a blossoming tree is defined as a spanning tree of the map decorated with some dangling half-edges that enable to reconstruct its faces. Our method generalizes a previous construction of Bernardi by loosening its conditions of applications so as to include annular maps, that is maps embedded in the plane with a root face different from the outer face. The bijective construction presented here relies deeply on the theory of \alpha-orientations introduced by Felsner, and in particular on the existence of minimal and accessible orientations. Since most of the families of maps can be characterized by such orientations, our generic bijective method is proved to capture as special cases all previously known bijections involving blossoming trees: for example Eulerian maps, m-Eulerian maps, non separable maps and simple triangulations and quadrangulations of a k-gon. Moreover, it also permits to obtain new bijective constructions for bipolar orientations and d-angulations of girth d of a k-gon. As for applications, each specialization of the construction translates into enumerative by-products, either via a closed formula or via a recursive computational scheme. Besides, for every family of maps described in the paper, the construction can be implemented in linear time. It yields thus an effective way to encode and generate planar maps. In a recent work, Bernardi and Fusy introduced another unified bijective scheme, we adopt here a different strategy which allows us to capture different bijections. These two approaches should be seen as two complementary ways of unifying bijections between planar maps and decorated trees.Comment: 45 pages, comments welcom
    corecore