123 research outputs found

    A Two-Stage Approach for Routing Multiple Unmanned Aerial Vehicles with Stochastic Fuel Consumption

    Full text link
    The past decade has seen a substantial increase in the use of small unmanned aerial vehicles (UAVs) in both civil and military applications. This article addresses an important aspect of refueling in the context of routing multiple small UAVs to complete a surveillance or data collection mission. Specifically, this article formulates a multiple-UAV routing problem with the refueling constraint of minimizing the overall fuel consumption for all of the vehicles as a two-stage stochastic optimization problem with uncertainty associated with the fuel consumption of each vehicle. The two-stage model allows for the application of sample average approximation (SAA). Although the SAA solution asymptotically converges to the optimal solution for the two-stage model, the SAA run time can be prohibitive for medium- and large-scale test instances. Hence, we develop a tabu-search-based heuristic that exploits the model structure while considering the uncertainty in fuel consumption. Extensive computational experiments corroborate the benefits of the two-stage model compared to a deterministic model and the effectiveness of the heuristic for obtaining high-quality solutions.Comment: 18 page

    Motion Planning for Unmanned Aerial Vehicles with Resource Constraints

    Get PDF
    Small Unmanned Aerial Vehicles (UAVs) are currently used in several surveillance applications to monitor a set of targets and collect relevant data. One of the main constraints that characterize a small UAV is the maximum amount of fuel the vehicle can carry. In the thesis, we consider a single UAV routing problem where there are multiple depots and the vehicle is allowed to refuel at any depot. The objective of the problem is to find a path for the UAV such that each target is visited at least once by the vehicle, the fuel constraint is never violated along the path for the UAV, and the total length of the path is a minimum. Mixed integer, linear programming formulations are proposed to solve the problem optimally. As solving these formulations to optimality may take a large amount of time, fast and efficient construction and improvement heuristics are developed to find good sub-optimal solutions to the problem. Simulation results are also presented to corroborate the performance of all the algorithms. In addition to the above contributions, this thesis develops an approximation algorithm for a multiple UAV routing problem with fuel constraints

    Heuristics for Routing Heterogeneous Unmanned Vehicles with Fuel Constraints

    Get PDF
    This paper addresses a multiple depot, multiple unmanned vehicle routing problem with fuel constraints. The objective of the problem is to find a tour for each vehicle such that all the specified targets are visited at least once by some vehicle, the tours satisfy the fuel constraints, and the total travel cost of the vehicles is a minimum. We consider a scenario where the vehicles are allowed to refuel by visiting any of the depots or fuel stations. This is a difficult optimization problem that involves partitioning the targets among the vehicles and finding a feasible tour for each vehicle. The focus of this paper is on developing fast variable neighborhood descent (VND) and variable neighborhood search (VNS) heuristics for finding good feasible solutions for large instances of the vehicle routing problem. Simulation results are presented to corroborate the performance of the proposed heuristics on a set of 23 large instances obtained from a standard library. These results show that the proposed VND heuristic, on an average, performed better than the proposed VNS heuristic for the tested instances
    • …
    corecore