1,015 research outputs found

    Solution space structure of random constraint satisfaction problems with growing domains

    Full text link
    In this paper we study the solution space structure of model RB, a standard prototype of Constraint Satisfaction Problem (CSPs) with growing domains. Using rigorous the first and the second moment method, we show that in the solvable phase close to the satisfiability transition, solutions are clustered into exponential number of well-separated clusters, with each cluster contains sub-exponential number of solutions. As a consequence, the system has a clustering (dynamical) transition but no condensation transition. This picture of phase diagram is different from other classic random CSPs with fixed domain size, such as random K-Satisfiability (K-SAT) and graph coloring problems, where condensation transition exists and is distinct from satisfiability transition. Our result verifies the non-rigorous results obtained using cavity method from spin glass theory, and sheds light on the structures of solution spaces of problems with a large number of states.Comment: 8 pages, 1 figure

    Geometrical organization of solutions to random linear Boolean equations

    Full text link
    The random XORSAT problem deals with large random linear systems of Boolean variables. The difficulty of such problems is controlled by the ratio of number of equations to number of variables. It is known that in some range of values of this parameter, the space of solutions breaks into many disconnected clusters. Here we study precisely the corresponding geometrical organization. In particular, the distribution of distances between these clusters is computed by the cavity method. This allows to study the `x-satisfiability' threshold, the critical density of equations where there exist two solutions at a given distance.Comment: 20 page

    Hierarchies of Inefficient Kernelizability

    Full text link
    The framework of Bodlaender et al. (ICALP 2008) and Fortnow and Santhanam (STOC 2008) allows us to exclude the existence of polynomial kernels for a range of problems under reasonable complexity-theoretical assumptions. However, there are also some issues that are not addressed by this framework, including the existence of Turing kernels such as the "kernelization" of Leaf Out Branching(k) into a disjunction over n instances of size poly(k). Observing that Turing kernels are preserved by polynomial parametric transformations, we define a kernelization hardness hierarchy, akin to the M- and W-hierarchy of ordinary parameterized complexity, by the PPT-closure of problems that seem likely to be fundamentally hard for efficient Turing kernelization. We find that several previously considered problems are complete for our fundamental hardness class, including Min Ones d-SAT(k), Binary NDTM Halting(k), Connected Vertex Cover(k), and Clique(k log n), the clique problem parameterized by k log n

    The satisfiability threshold for random linear equations

    Full text link
    Let AA be a random m×nm\times n matrix over the finite field FqF_q with precisely kk non-zero entries per row and let y∈Fqmy\in F_q^m be a random vector chosen independently of AA. We identify the threshold m/nm/n up to which the linear system Ax=yA x=y has a solution with high probability and analyse the geometry of the set of solutions. In the special case q=2q=2, known as the random kk-XORSAT problem, the threshold was determined by [Dubois and Mandler 2002, Dietzfelbinger et al. 2010, Pittel and Sorkin 2016], and the proof technique was subsequently extended to the cases q=3,4q=3,4 [Falke and Goerdt 2012]. But the argument depends on technically demanding second moment calculations that do not generalise to q>3q>3. Here we approach the problem from the viewpoint of a decoding task, which leads to a transparent combinatorial proof
    • …
    corecore