12,997 research outputs found

    Semi-Trusted Mixer Based Privacy Preserving Distributed Data Mining for Resource Constrained Devices

    Get PDF
    In this paper a homomorphic privacy preserving association rule mining algorithm is proposed which can be deployed in resource constrained devices (RCD). Privacy preserved exchange of counts of itemsets among distributed mining sites is a vital part in association rule mining process. Existing cryptography based privacy preserving solutions consume lot of computation due to complex mathematical equations involved. Therefore less computation involved privacy solutions are extremely necessary to deploy mining applications in RCD. In this algorithm, a semi-trusted mixer is used to unify the counts of itemsets encrypted by all mining sites without revealing individual values. The proposed algorithm is built on with a well known communication efficient association rule mining algorithm named count distribution (CD). Security proofs along with performance analysis and comparison show the well acceptability and effectiveness of the proposed algorithm. Efficient and straightforward privacy model and satisfactory performance of the protocol promote itself among one of the initiatives in deploying data mining application in RCD.Comment: IEEE Publication format, International Journal of Computer Science and Information Security, IJCSIS, Vol. 8 No. 1, April 2010, USA. ISSN 1947 5500, http://sites.google.com/site/ijcsis

    Secure Multi-Party Computation Based Privacy Preserving Extreme Learning Machine Algorithm Over Vertically Distributed Data

    Full text link
    Especially in the Big Data era, the usage of different classification methods is increasing day by day. The success of these classification methods depends on the effectiveness of learning methods. Extreme learning machine (ELM) classification algorithm is a relatively new learning method built on feed-forward neural-network. ELM classification algorithm is a simple and fast method that can create a model from high-dimensional data sets. Traditional ELM learning algorithm implicitly assumes complete access to whole data set. This is a major privacy concern in most of cases. Sharing of private data (i.e. medical records) is prevented because of security concerns. In this research, we propose an efficient and secure privacy-preserving learning algorithm for ELM classification over data that is vertically partitioned among several parties. The new learning method preserves the privacy on numerical attributes, builds a classification model without sharing private data without disclosing the data of each party to others.Comment: 22nd International Conference, ICONIP 201
    corecore