60,600 research outputs found

    Algorithmic solution of higher type equations

    Full text link

    Reduction of dimension for nonlinear dynamical systems

    Get PDF
    We consider reduction of dimension for nonlinear dynamical systems. We demonstrate that in some cases, one can reduce a nonlinear system of equations into a single equation for one of the state variables, and this can be useful for computing the solution when using a variety of analytical approaches. In the case where this reduction is possible, we employ differential elimination to obtain the reduced system. While analytical, the approach is algorithmic, and is implemented in symbolic software such as {\sc MAPLE} or {\sc SageMath}. In other cases, the reduction cannot be performed strictly in terms of differential operators, and one obtains integro-differential operators, which may still be useful. In either case, one can use the reduced equation to both approximate solutions for the state variables and perform chaos diagnostics more efficiently than could be done for the original higher-dimensional system, as well as to construct Lyapunov functions which help in the large-time study of the state variables. A number of chaotic and hyperchaotic dynamical systems are used as examples in order to motivate the approach.Comment: 16 pages, no figure

    Biased landscapes for random Constraint Satisfaction Problems

    Full text link
    The typical complexity of Constraint Satisfaction Problems (CSPs) can be investigated by means of random ensembles of instances. The latter exhibit many threshold phenomena besides their satisfiability phase transition, in particular a clustering or dynamic phase transition (related to the tree reconstruction problem) at which their typical solutions shatter into disconnected components. In this paper we study the evolution of this phenomenon under a bias that breaks the uniformity among solutions of one CSP instance, concentrating on the bicoloring of k-uniform random hypergraphs. We show that for small k the clustering transition can be delayed in this way to higher density of constraints, and that this strategy has a positive impact on the performances of Simulated Annealing algorithms. We characterize the modest gain that can be expected in the large k limit from the simple implementation of the biasing idea studied here. This paper contains also a contribution of a more methodological nature, made of a review and extension of the methods to determine numerically the discontinuous dynamic transition threshold.Comment: 32 pages, 16 figure

    An inverse approach to Einstein's equations for non-conducting fluids

    Full text link
    We show that a flow (timelike congruence) in any type B1B_{1} warped product spacetime is uniquely and algorithmically determined by the condition of zero flux. (Though restricted, these spaces include many cases of interest.) The flow is written out explicitly for canonical representations of the spacetimes. With the flow determined, we explore an inverse approach to Einstein's equations where a phenomenological fluid interpretation of a spacetime follows directly from the metric irrespective of the choice of coordinates. This approach is pursued for fluids with anisotropic pressure and shear viscosity. In certain degenerate cases this interpretation is shown to be generically not unique. The framework developed allows the study of exact solutions in any frame without transformations. We provide a number of examples, in various coordinates, including spacetimes with and without unique interpretations. The results and algorithmic procedure developed are implemented as a computer algebra program called GRSource.Comment: 9 pages revtex4. Final form to appear in Phys Rev
    corecore