113,973 research outputs found

    Wide range screening of algorithmic bias in word embedding models using large sentiment lexicons reveals underreported bias types

    Full text link
    This work describes a large-scale analysis of sentiment associations in popular word embedding models along the lines of gender and ethnicity but also along the less frequently studied dimensions of socioeconomic status, age, sexual orientation, religious sentiment and political leanings. Consistent with previous scholarly literature, this work has found systemic bias against given names popular among African-Americans in most embedding models examined. Gender bias in embedding models however appears to be multifaceted and often reversed in polarity to what has been regularly reported. Interestingly, using the common operationalization of the term bias in the fairness literature, novel types of so far unreported bias types in word embedding models have also been identified. Specifically, the popular embedding models analyzed here display negative biases against middle and working-class socioeconomic status, male children, senior citizens, plain physical appearance, Islamic religious faith, non-religiosity and conservative political orientation. Reasons for the paradoxical underreporting of these bias types in the relevant literature are probably manifold but widely held blind spots when searching for algorithmic bias and a lack of widespread technical jargon to unambiguously describe a variety of algorithmic associations could conceivably be playing a role. The causal origins for the multiplicity of loaded associations attached to distinct demographic groups within embedding models are often unclear but the heterogeneity of said associations and their potential multifactorial roots raises doubts about the validity of grouping them all under the umbrella term bias. Richer and more fine-grained terminology as well as a more comprehensive exploration of the bias landscape could help the fairness epistemic community to characterize and neutralize algorithmic discrimination more efficiently

    How algorithmic popularity bias hinders or promotes quality

    Full text link
    Algorithms that favor popular items are used to help us select among many choices, from engaging articles on a social media news feed to songs and books that others have purchased, and from top-raked search engine results to highly-cited scientific papers. The goal of these algorithms is to identify high-quality items such as reliable news, beautiful movies, prestigious information sources, and important discoveries --- in short, high-quality content should rank at the top. Prior work has shown that choosing what is popular may amplify random fluctuations and ultimately lead to sub-optimal rankings. Nonetheless, it is often assumed that recommending what is popular will help high-quality content "bubble up" in practice. Here we identify the conditions in which popularity may be a viable proxy for quality content by studying a simple model of cultural market endowed with an intrinsic notion of quality. A parameter representing the cognitive cost of exploration controls the critical trade-off between quality and popularity. We find a regime of intermediate exploration cost where an optimal balance exists, such that choosing what is popular actually promotes high-quality items to the top. Outside of these limits, however, popularity bias is more likely to hinder quality. These findings clarify the effects of algorithmic popularity bias on quality outcomes, and may inform the design of more principled mechanisms for techno-social cultural markets

    A Confidence-Based Approach for Balancing Fairness and Accuracy

    Full text link
    We study three classical machine learning algorithms in the context of algorithmic fairness: adaptive boosting, support vector machines, and logistic regression. Our goal is to maintain the high accuracy of these learning algorithms while reducing the degree to which they discriminate against individuals because of their membership in a protected group. Our first contribution is a method for achieving fairness by shifting the decision boundary for the protected group. The method is based on the theory of margins for boosting. Our method performs comparably to or outperforms previous algorithms in the fairness literature in terms of accuracy and low discrimination, while simultaneously allowing for a fast and transparent quantification of the trade-off between bias and error. Our second contribution addresses the shortcomings of the bias-error trade-off studied in most of the algorithmic fairness literature. We demonstrate that even hopelessly naive modifications of a biased algorithm, which cannot be reasonably said to be fair, can still achieve low bias and high accuracy. To help to distinguish between these naive algorithms and more sensible algorithms we propose a new measure of fairness, called resilience to random bias (RRB). We demonstrate that RRB distinguishes well between our naive and sensible fairness algorithms. RRB together with bias and accuracy provides a more complete picture of the fairness of an algorithm

    Bias In, Bias Out? Evaluating the Folk Wisdom

    Get PDF
    We evaluate the folk wisdom that algorithmic decision rules trained on data produced by biased human decision-makers necessarily reflect this bias. We consider a setting where training labels are only generated if a biased decision-maker takes a particular action, and so "biased" training data arise due to discriminatory selection into the training data. In our baseline model, the more biased the decision-maker is against a group, the more the algorithmic decision rule favors that group. We refer to this phenomenon as bias reversal. We then clarify the conditions that give rise to bias reversal. Whether a prediction algorithm reverses or inherits bias depends critically on how the decision-maker affects the training data as well as the label used in training. We illustrate our main theoretical results in a simulation study applied to the New York City Stop, Question and Frisk dataset

    Demonstration of Bias-Controlled Algorithmic Tuning of Quantum Dots in a Well (DWELL) MidIR Detectors

    Get PDF
    The quantum-confined Stark effect in intersublevel transitions present in quantum-dots-in-a-well (DWELL) detectors gives rise to a midIR spectral response that is dependent upon the detector\u27s operational bias. The spectral responses resulting from different biases exhibit spectral shifts, albeit with significant spectral overlap. A postprocessing algorithm was developed by Sakoglu that exploited this bias-dependent spectral diversity to predict the continuous and arbitrary tunability of the DWELL detector within certain limits. This paper focuses on the experimental demonstration of the DWELL-based spectral tuning algorithm. It is shown experimentally that it is possible to reconstruct the spectral content of a target electronically without using any dispersive optical elements for tuning, thereby demonstrating a DWELL-based algorithmic spectrometer. The effects of dark current, detector temperature, and bias selection on the tuning capability are also investigated experimentally
    corecore