50 research outputs found

    A Brascamp-Lieb–Rary of Examples

    Get PDF
    This paper focuses on the Brascamp-Lieb inequality and its applications in analysis, fractal geometry, computer science, and more. It provides a beginner-level introduction to the Brascamp-Lieb inequality alongside re- lated inequalities in analysis and explores specific cases of extremizable, simple, and equivalent Brascamp-Lieb data. Connections to computer sci- ence and geometric measure theory are introduced and explained. Finally, the Brascamp-Lieb constant is calculated for a chosen family of linear maps

    Operator scaling with specified marginals

    Full text link
    The completely positive maps, a generalization of the nonnegative matrices, are a well-studied class of maps from n×nn\times n matrices to m×mm\times m matrices. The existence of the operator analogues of doubly stochastic scalings of matrices is equivalent to a multitude of problems in computer science and mathematics, such rational identity testing in non-commuting variables, noncommutative rank of symbolic matrices, and a basic problem in invariant theory (Garg, Gurvits, Oliveira and Wigderson, FOCS, 2016). We study operator scaling with specified marginals, which is the operator analogue of scaling matrices to specified row and column sums. We characterize the operators which can be scaled to given marginals, much in the spirit of the Gurvits' algorithmic characterization of the operators that can be scaled to doubly stochastic (Gurvits, Journal of Computer and System Sciences, 2004). Our algorithm produces approximate scalings in time poly(n,m) whenever scalings exist. A central ingredient in our analysis is a reduction from the specified marginals setting to the doubly stochastic setting. Operator scaling with specified marginals arises in diverse areas of study such as the Brascamp-Lieb inequalities, communication complexity, eigenvalues of sums of Hermitian matrices, and quantum information theory. Some of the known theorems in these areas, several of which had no effective proof, are straightforward consequences of our characterization theorem. For instance, we obtain a simple algorithm to find, when they exist, a tuple of Hermitian matrices with given spectra whose sum has a given spectrum. We also prove new theorems such as a generalization of Forster's theorem (Forster, Journal of Computer and System Sciences, 2002) concerning radial isotropic position.Comment: 34 pages, 3 page appendi

    Algebraic combinatorial optimization on the degree of determinants of noncommutative symbolic matrices

    Full text link
    We address the computation of the degrees of minors of a noncommutative symbolic matrix of form A[c]:=∑k=1mAktckxk, A[c] := \sum_{k=1}^m A_k t^{c_k} x_k, where AkA_k are matrices over a field K\mathbb{K}, xix_i are noncommutative variables, ckc_k are integer weights, and tt is a commuting variable specifying the degree. This problem extends noncommutative Edmonds' problem (Ivanyos et al. 2017), and can formulate various combinatorial optimization problems. Extending the study by Hirai 2018, and Hirai, Ikeda 2022, we provide novel duality theorems and polyhedral characterization for the maximum degrees of minors of A[c]A[c] of all sizes, and develop a strongly polynomial-time algorithm for computing them. This algorithm is viewed as a unified algebraization of the classical Hungarian method for bipartite matching and the weight-splitting algorithm for linear matroid intersection. As applications, we provide polynomial-time algorithms for weighted fractional linear matroid matching and linear optimization over rank-2 Brascamp-Lieb polytopes

    Adjoint Brascamp-Lieb inequalities

    Full text link
    The Brascamp-Lieb inequalities are a generalization of the H\"older, Loomis-Whitney, Young, and Finner inequalities that have found many applications in harmonic analysis and elsewhere. In this paper we introduce an "adjoint" version of these inequalities, which can be viewed as an LpL^p version of the entropy Brascamp-Lieb inequalities of Carlen and Cordero-Erausquin. As applications, we reprove a log-convexity property of the Gowers uniformity norms, and establish some reverse LpL^p inequalities for various tomographic transforms. We conclude with some open questions.Comment: 43 page
    corecore