502 research outputs found

    Concentration inequalities of the cross-validation estimate for stable predictors

    Full text link
    In this article, we derive concentration inequalities for the cross-validation estimate of the generalization error for stable predictors in the context of risk assessment. The notion of stability has been first introduced by \cite{DEWA79} and extended by \cite{KEA95}, \cite{BE01} and \cite{KUNIY02} to characterize class of predictors with infinite VC dimension. In particular, this covers kk-nearest neighbors rules, bayesian algorithm (\cite{KEA95}), boosting,... General loss functions and class of predictors are considered. We use the formalism introduced by \cite{DUD03} to cover a large variety of cross-validation procedures including leave-one-out cross-validation, kk-fold cross-validation, hold-out cross-validation (or split sample), and the leave-Ï…\upsilon-out cross-validation. In particular, we give a simple rule on how to choose the cross-validation, depending on the stability of the class of predictors. In the special case of uniform stability, an interesting consequence is that the number of elements in the test set is not required to grow to infinity for the consistency of the cross-validation procedure. In this special case, the particular interest of leave-one-out cross-validation is emphasized

    Hypothesis Transfer Learning with Surrogate Classification Losses: Generalization Bounds through Algorithmic Stability

    Full text link
    Hypothesis transfer learning (HTL) contrasts domain adaptation by allowing for a previous task leverage, named the source, into a new one, the target, without requiring access to the source data. Indeed, HTL relies only on a hypothesis learnt from such source data, relieving the hurdle of expansive data storage and providing great practical benefits. Hence, HTL is highly beneficial for real-world applications relying on big data. The analysis of such a method from a theoretical perspective faces multiple challenges, particularly in classification tasks. This paper deals with this problem by studying the learning theory of HTL through algorithmic stability, an attractive theoretical framework for machine learning algorithms analysis. In particular, we are interested in the statistical behaviour of the regularized empirical risk minimizers in the case of binary classification. Our stability analysis provides learning guarantees under mild assumptions. Consequently, we derive several complexity-free generalization bounds for essential statistical quantities like the training error, the excess risk and cross-validation estimates. These refined bounds allow understanding the benefits of transfer learning and comparing the behaviour of standard losses in different scenarios, leading to valuable insights for practitioners
    • …
    corecore